Atmospheric scintillation studies have been traditionally undertaken utilizing nonimaging detection. When imaging devices are used, they typically detect the resultant signal at the receiver plane. Here, a high-speed camera has been utilized in atmospheric scintillation field trials, imaging a laser source (i.e., imaging the object plane) over a near ground path length of 1.5 km. The statistical nature of the acquired atmospheric scintillation data is characterized using a range of probability density functions. The exponentiated Weibull function was found to best describe the nature of scintillation over the broadest range of a scintillation index typical of atmospheric scintillation. A preliminary investigation into the relationship between the fit variables of three of the better-performing probability density functions and the scintillation index is presented, along with suggestions for future use of digital cameras in atmospheric scintillation studies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.422720DOI Listing

Publication Analysis

Top Keywords

atmospheric scintillation
24
scintillation studies
12
scintillation
9
probability density
8
density functions
8
atmospheric
6
utilization high-speed
4
imaging
4
high-speed imaging
4
imaging atmospheric
4

Similar Publications

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

Removal of liquid scintillator exudates by the metal organic frameworks materials: The role of functional groups.

PLoS One

December 2024

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.

The leakage of Liquid scintillator exudates has brought potential harm to the environment. Attributed to the large specific surface area and high modifiability, high-performance adsorbents based on metal-organic frameworks (MOFs) can effectively remove organic pollutants. In this work, we use different functional groups to prepare the material of UIO-66(Zr).

View Article and Find Full Text PDF

A multi-instrument study is conducted at the dayside polar ionosphere to investigate the spatio-temporal evolution of scintillation in Global Navigation Satellite System (GNSS) signals during non-storm conditions. Bursts of intense amplitude and phase scintillation started to occur at 9 MLT and persisted for more than 1 hour implying the simultaneous existence of Fresnel and large-scale sized irregularities of significant strength in the pre-noon sector. Measurements from the EISCAT radar in Svalbard (ESR) revealed the presence of dense plasma structures with significant gradients in regions of strong Joule heating/fast flows and soft precipitation when scintillation was enhanced.

View Article and Find Full Text PDF

The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC).

View Article and Find Full Text PDF

Optimizing the transmit light beams unlocks the full potential of free-space optical systems. However, designing application-specific light beams remains a challenge, especially for those traversing random media. In this study, we address this gap by proposing a deep learning-based method to generate optimal beams for propagation through atmospheric turbulence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!