In this work, an optical fiber was coated by a thin-film metal layer to work as a fiber optical phase modulator based on thermal effect. This device was assembled in one of the arms of an all-fiber Michelson interferometer stabilized by a nonlinear control system based on variable structure and sliding modes. The frequency response reached 200 Hz, which can be considered high for a device based on the thermal effect. Compared with a fiber optical phase modulator based on the piezoelectric effect, the thermal modulator presented a higher scale factor per meter of optical fiber, showing the potential to work as a simple, low-cost, small-sized, short length, lightweight, and low-voltage fiber optical phase modulator.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.428703DOI Listing

Publication Analysis

Top Keywords

fiber optical
16
optical phase
16
phase modulator
16
modulator based
12
based thermal
12
nonlinear control
8
optical fiber
8
fiber
6
optical
6
modulator
5

Similar Publications

Ultrafine fiber-mediated transvascular interventional photothermal therapy using indocyanine green for precision embolization treatment.

Biomater Sci

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, China.

Photothermal treatment has attracted immense interest as a promising approach for biomedical applications such as cancer ablation, yet its effectiveness is often limited by insufficient laser penetration and challenges in achieving efficient targeting of photothermal agents. Here we developed a transvascular interventional photothermal therapy (Ti-PTT), which employed a small-sized microcatheter (outer diameter: 0.60 mm, 1.

View Article and Find Full Text PDF

In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.

View Article and Find Full Text PDF

Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels.

Biophys Rev

December 2024

Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India.

Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging.

View Article and Find Full Text PDF

Aim: To compare the macular and optic nerve perfusion and vascular architecture using optical coherence tomography angiography (OCTA) in normal eyes of Egyptian (Caucasians) and South Asian (Asians) volunteers.

Methods: Cross-sectional analytical OCTA study performed on 90 eyes of South Asian (=45) and Egyptians (=45) were analyzed. All participants underwent best-corrected visual acuity test, slit lamp, and fundus examination.

View Article and Find Full Text PDF

There is an emerging wide use of nanotechnology in the medical fields. The information regarding distribution and clearance of gold nanoparticles (AuNPs) in the ocular tissue is insufficient. We investigated the cumulative effect of AuNPs on rat lens structure and their effect on the redox state and aquaporin-0 (AQP0) expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!