A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two-dimensional MoS 2H, 1T, and 1T crystalline phases with incorporated adatoms: theoretical investigation of electronic and optical properties. | LitMetric

Although there has been progress in studying the electronic and optical properties of monolayer and near-monolayer (two-dimensional, 2D) upon adatom adsorption and intercalation, understanding the underlying atomic-level behavior is lacking, particularly as related to the optical response. Alkali atom intercalation in 2D transition metal dichalcogenides (TMDs) is relevant to chemical exfoliation methods that are expected to enable large scale production. In this work, focusing on prototypical 2D , the adsorption and intercalation of Li, Na, K, and Ca adatoms were investigated for the 2H, 1T, and 1T phases of the TMD by the first principles density functional theory in comparison to experimental characterization of 2H and 1T 2D films. Our electronic structure calculations demonstrate significant charge transfer, influencing work function reductions of 1-1.5 eV. Furthermore, electrical conductivity calculations confirm the semiconducting versus metallic behavior. Calculations of the optical spectra, including excitonic effects using a many-body theoretical approach, indicate enhancement of the optical transmission upon phase change. Encouragingly, this is corroborated, in part, by the experimental measurements for the 2H and 1T phases having semiconducting and metallic behavior, respectively, thus motivating further experimental exploration. Overall, our calculations emphasize the potential impact of synthesis-relevant adatom incorporation in 2D on the electronic and optical responses that comprise important considerations toward the development of devices such as photodetectors or the miniaturization of electroabsorption modulator components.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.433239DOI Listing

Publication Analysis

Top Keywords

electronic optical
12
optical properties
8
adsorption intercalation
8
metallic behavior
8
optical
6
two-dimensional mos
4
mos crystalline
4
crystalline phases
4
phases incorporated
4
incorporated adatoms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!