Practical stellar interferometry for space domain awareness is challenged by the relative motions of orbital objects and telescope arrays that require array phasing using guide stars. An orbital object's image sensitivity to the location and brightness of the guide star is problematic, possibly resulting in a degraded resolution or loss of image content when both objects fall within the interferometer's field of view. We characterized an orbital object's visibility using visibility contrast to noise ratios () as a performance metric for orbital object image quality. Experimental validations included orbital object visibility measurements for dual binary pinholes that were scaled in size and brightness individually to match expected interferometer data collection scenarios. We show agreement in results, indicating resolvable orbital object signals during periods of collection when signal contributions from both the orbital object and guide star are present. Expanding presented results to imaging interferometers, we discuss how dual object imaging could degrade performance under the scenarios examined.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.427087DOI Listing

Publication Analysis

Top Keywords

orbital object
16
dual object
8
object imaging
8
orbital object's
8
guide star
8
orbital
7
object
6
fringe visibility
4
visibility errors
4
errors dual
4

Similar Publications

Face pareidolia minimally engages macaque face selective neurons.

Prog Neurobiol

January 2025

Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health; Bethesda, MD, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute; Bethesda, MD, USA. Electronic address:

The macaque cerebral cortex contains concentrations of neurons that prefer faces over inanimate objects. Although these so-called face patches are thought to be specialized for the analysis of facial signals, their exact tuning properties remain unclear. For example, what happens when an object by chance resembles a face? Everyday objects can sometimes, through the accidental positioning of their internal components, appear as faces.

View Article and Find Full Text PDF

We performed the first simulations of accretion onto the compact objects in the Reissner-Nordström (RN) space-time. The results obtained in general relativity are representative of those for spherically symmetric naked singularities and black holes in a number of modified gravity theories. A possible application of these calculations is to the active galactic nuclei with their powerful jets and outflows.

View Article and Find Full Text PDF

We present the case of a patient who came to the emergency department with a significant decrease in vision and dilated pupil in the left eye. Since neurological pathologies were primarily considered, diffusion brain magnetic resonance imaging (MRI) and brain computed tomography (CT) were requested. After the results were reported as normal, we were consulted.

View Article and Find Full Text PDF

Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.

View Article and Find Full Text PDF

High-velocity stars and peculiar G objects orbit the central supermassive black hole (SMBH) Sagittarius A* (Sgr A*). Together, the G objects and high-velocity stars constitute the S cluster. In contrast with theoretical predictions, no binary system near Sgr A* has been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!