We have calculated two-dimensional plasmon energy spectra in HgTe/CdHgTe quantum wells with normal, gapless, and inverted energy spectra with different electron concentrations, taking into account spatial dispersion of electron polarizability and plasmon interaction with the optical phonons. The spectra of the absorption coefficients of two-dimensional plasmons are found. It is shown that an increase of electron concentration in a quantum well leads to a decrease in the plasmon absorption coefficient. We have calculated the probabilities to recombine via the plasmon emission for nonequilibrium holes. The threshold concentrations of the nonequilibrium holes, above which the plasmon amplification is possible, have been calculated for various electron concentrations. It is shown that the presence of equilibrium electrons can significantly reduce the threshold hole concentration required for amplification of plasmon in the terahertz wavelength region. The dependencies of threshold hole concentration on electron concentration for different quantum wells are discussed. Gain spectra of the two-dimension plasmon are calculated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.438501DOI Listing

Publication Analysis

Top Keywords

quantum well
8
amplification calculated
8
energy spectra
8
quantum wells
8
electron concentrations
8
electron concentration
8
concentration quantum
8
nonequilibrium holes
8
threshold hole
8
hole concentration
8

Similar Publications

Lobopaucinoids A-Q, bioactive terpenoids from the soft coral Lobophytum pauciflorum collected in the South China Sea.

Phytochemistry

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, People's Republic of China. Electronic address:

Two undescribed rearranged diterpenoids, lobopaucinoids A and B (1 and 2), along with thirteen undescribed lobane-type diterpenoids lobopaucinoids C-O (3-15) including a C (11) and two C (12 and 13) undescribed norditerpenoids, were isolated from the soft coral Lobophytum pauciflorum Ehrenberg (Sarcophytidae family) collected from Xisha Islands of the South China Sea. Additionally, two undescribed prenyleudesmane-type diterpenoids, lobopaucinoids P and Q (16 and 17), as well as two known lobane diterpenoids (18 and 19), were also obtained. Their structures were elucidated based on comprehensive spectroscopic data, Mosher's method, Mo(OAc) or Rh(OCOCF)-induced circular dichroism experiment, quantum chemical calculations, and single-crystal X-ray diffraction and literature comparison.

View Article and Find Full Text PDF

Gas phase bond dissociation energies (BDE) O-H/N-H in hydroquinone (HQ), 4-aminophenol (AP), 1,4-phenylenediamine (PDA), 4-hydroxydiphenylamine (HDPA), N,N'-diphenyl-1,4-phenylenediamine (DPPDA) as well as in their phenoxyl/aminyl radicals have been determined using a combined technique of quantum chemical calculation. The technique included a series of DFT (PBE1PBE, TPSSTPSS, M06-2X), ab initio (DLPNO-CCSD(T)) methods with valence 3ξ-basis sets, composite methods of Gaussian family (G4) and Weizmann theory with ab initio Brueckner Doubles (W1BD), as well as reference reactions of different levels of structural similarity. W1BD method was used in combination with isodesmic reactions for BDE estimation (kJ∙mol) of compounds with the only aromatic fragment: BDE = 352.

View Article and Find Full Text PDF

Symmetry: A Fundamental Resource for Quantum Coherence and Metrology.

Phys Rev Lett

December 2024

Ens de Lyon, Université Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

We introduce a new paradigm for the preparation of deeply entangled states useful for quantum metrology. We show that, when the quantum state is an eigenstate of an operator A, observables G which are completely off diagonal with respect to A have purely quantum fluctuations, as quantified by the quantum Fisher information, namely, F_{Q}(G)=4⟨G^{2}⟩. This property holds regardless of the purity of the quantum state, and it implies that off-diagonal fluctuations represent a metrological resource for phase estimation.

View Article and Find Full Text PDF

Superselection Rules and Bosonic Quantum Computational Resources.

Phys Rev Lett

December 2024

Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France.

We present a method to systematically identify and classify quantum optical nonclassical states as classical or nonclassical based on the resources they create on a bosonic quantum computer. This is achieved by converting arbitrary bosonic states into multiple modes, each occupied by a single photon, thereby defining qubits of a bosonic quantum computer. Starting from a bosonic classical-like state in a representation that explicitly respects particle number superselection rules, we apply universal gates to create arbitrary superpositions of states with the same total particle number.

View Article and Find Full Text PDF

Nonunitary Gates Using Measurements Only.

Phys Rev Lett

December 2024

Tel Aviv University, School of Physics and Astronomy, Tel Aviv 6997801, Israel.

Measurement-based quantum computation (MBQC) is a universal platform to realize unitary gates, only using measurements that act on a preprepared entangled resource state. By deforming the measurement bases, as well as the geometry of the resource state, we show that MBQC circuits always transmit and act on the input state but generally realize nonunitary logical gates. In contrast to the stabilizer formalism that is often used for unitary gates, we find that ZX-calculus is an ideal computation method for these nonunitary gates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!