Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Different from conventional microimaging techniques, polarization imaging can generate multiple polarization images in a single perspective by changing the polarization angle. However, how to efficiently fuse the information in these multiple polarization images by a convolutional neural network (CNN) is still a challenging problem. In this paper, we propose a hybrid 3D-2D convolutional neural network called MuellerNet, to classify biological cells with Mueller matrix images (MMIs). The MuellerNet includes a normal stream and a polarimetric stream, in which the first Mueller matrix image is taken as the input of normal stream, and the rest MMIs are stacked to form the input of a polarimetric stream. The normal stream is mainly constructed with a backbone network and, in the polarimetric stream, the attention mechanism is used to adaptively assign weights to different convolutional maps. To improve the network's discrimination, a loss function is introduced to simultaneously optimize parameters of the two streams. Two Mueller matrix image datasets are built, which include four types of breast cancer cells and three types of algal cells, respectively. Experiments are conducted on these two datasets with many well-known and recent networks. Results show that the proposed network efficiently improves the classification accuracy and helps to find discriminative features in MMIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.431076 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!