A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3124
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Open-source Longitudinal Sleep Analysis From Accelerometer Data (DPSleep): Algorithm Development and Validation. | LitMetric

Background: Wearable devices are now widely available to collect continuous objective behavioral data from individuals and to measure sleep.

Objective: This study aims to introduce a pipeline to infer sleep onset, duration, and quality from raw accelerometer data and then quantify the relationships between derived sleep metrics and other variables of interest.

Methods: The pipeline released here for the deep phenotyping of sleep, as the DPSleep software package, uses a stepwise algorithm to detect missing data; within-individual, minute-based, spectral power percentiles of activity; and iterative, forward-and-backward-sliding windows to estimate the major Sleep Episode onset and offset. Software modules allow for manual quality control adjustment of the derived sleep features and correction for time zone changes. In this paper, we have illustrated the pipeline with data from participants studied for more than 200 days each.

Results: Actigraphy-based measures of sleep duration were associated with self-reported sleep quality ratings. Simultaneous measures of smartphone use and GPS location data support the validity of the sleep timing inferences and reveal how phone measures of sleep timing can differ from actigraphy data.

Conclusions: We discuss the use of DPSleep in relation to other available sleep estimation approaches and provide example use cases that include multi-dimensional, deep longitudinal phenotyping, extended measurement of dynamics associated with mental illness, and the possibility of combining wearable actigraphy and personal electronic device data (eg, smartphones and tablets) to measure individual differences across a wide range of behavioral variations in health and disease. A new open-source pipeline for deep phenotyping of sleep, DPSleep, analyzes raw accelerometer data from wearable devices and estimates sleep onset and offset while allowing for manual quality control adjustments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529474PMC
http://dx.doi.org/10.2196/29849DOI Listing

Publication Analysis

Top Keywords

sleep
13
accelerometer data
12
data
8
wearable devices
8
sleep onset
8
raw accelerometer
8
derived sleep
8
deep phenotyping
8
phenotyping sleep
8
sleep dpsleep
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!