This systematic review and meta-analysis determined whether the ergogenic effects of branched-chain amino acids (BCAA) ameliorated markers of muscle damage and performance following strenuous exercise. In total, 25 studies were included, consisting of 479 participants (age 24.3 ± 8.3 years, height 1.73 ± 0.06 m, body mass 70.8 ± 9.5 kg, females 26.3%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the BCAA and placebo conditions at 24 and 48 hours following muscle-damaging exercises, using standardised mean differences and associated -values via forest plots. Our meta-analysis demonstrated significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) at 48 hours post-exercise (standardised mean difference [SMD] = -0.41; < 0.05) for the BCAA than placebo conditions, whilst muscle soreness was significant at 24 hours post-exercise (SMD = -0.28 ≤ ≤ -0.61; < 0.05) and 48 hours post-exercise (SMD = -0.41 ≤ ≤ -0.92; < 0.01). However, no significant differences were identified between the BCAA and placebo conditions for muscle performance at 24 or 48 hours post-exercise (SMD = 0.08 ≤ ≤ 0.21; > 0.05). Overall, BCAA reduced the level of muscle damage biomarkers and muscle soreness following muscle-damaging exercises. However, the potential benefits of BCAA for muscle performance recovery is questionable and warrants further investigation to determine the practicality of BCAA for ameliorating muscle damage symptoms in diverse populations. PROSPERO registration number: CRD42020191248. BCAA reduces the level of creatine kinase and muscle soreness following strenuous exercise with a dose-response relationship. BCAA does not accelerate recovery for muscle performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/apnm-2021-0110 | DOI Listing |
J Sci Med Sport
January 2025
Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Sylvan Adams Sports Institute, Tel-Aviv University, Israel. Electronic address:
Objectives: The study aimed to examine the effects of exercise-induced muscle damage on running kinetics.
Design: Twenty-six adult recreational male runners performed 60 min of downhill running (-10 %) at 65 % of maximal heart rate. Running gait changes, systemic and localized muscle damage markers were assessed pre - and post-exercise induced muscle damage protocol.
Atherosclerosis and aortic aneurysms are prevalent cardiovascular diseases in the elderly, characterized by chronic inflammation and oxidative stress. This study explores the role of CircXYLT1 in regulating oxidative stress and vascular remodeling in age-related vascular diseases. RNA sequencing revealed a significant upregulation of CircXYLT1 in the vascular tissues of aged mice, highlighting its potential role in age-related vascular diseases.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Liver fibrosis is a persistent damage repair response triggered by various etiological factors, resulting in an excessive accumulation of extracellular matrix (ECM). Activated hepatic stellate cells (HpSCs) are the primary source of ECM proteins. Therefore, specifically targeting HpSCs has become a crucial approach for treating liver fibrosis.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, Affiliated Hospital of Jiangnan University, 214122 Wuxi, Jiangsu, China.
Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!