Aneuploidy and whole genome duplication (WGD) events are common features of cancers associated with poor outcomes, but the ways they influence trajectories of clonal evolution are poorly understood. Phylogenetic methods for reconstructing clonal evolution from genomic data have proven a powerful tool for understanding how clonal evolution occurs in the process of cancer progression, but extant methods so far have limited the ability to resolve tumor evolution via ploidy changes. This limitation exists in part because single-cell DNA-sequencing (scSeq), which has been crucial to developing detailed profiles of clonal evolution, has difficulty in resolving ploidy changes and WGD. Multiplex interphase fluorescence in situ hybridization (miFISH) provides a more unambiguous signal of single-cell ploidy changes but it is limited to profiling small numbers of single markers. Here, we develop a joint clustering method to combine these two data sources with the goal of better resolving ploidy changes in tumor evolution. We develop a probabilistic framework to maximize the probability of latent variables given the pre-clustered datasets, which we optimize via Markov chain Monte Carlo sampling combined with linear regression. We validate the method by using simulated data derived from a glioblastoma (GBM) case profiled by both scSeq and miFISH. We further apply the method to two GBM cases with scSeq and miFISH data by reconstructing a phylogenetic tree from the joint clustering results, demonstrating their synergistic value in understanding how focal copy number changes and WGD events can collectively contribute to tumor progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819512 | PMC |
http://dx.doi.org/10.1089/cmb.2021.0255 | DOI Listing |
Int J Cancer
January 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China.
Background: Pulmonary arterial hypertension (PAH) is a severe and progressive cardiovascular disease. While potential links between clonal hematopoiesis (CH) and cardiovascular diseases have been identified, the causal relationship between CH and PAH remains unclear. This study aims to investigate the causal effect of CH on the risk of PAH using a two-sample Mendelian randomization (MR) approach.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
As the simplest free-living animal, (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, No.167, Beijing, 100037, China.
Aim: Both clonal hematopoiesis of indeterminate potential (CHIP) and type 2 diabetes mellitus (T2DM) are conditions closely associated with advancing age. This study delves into the possible implications and prognostic significance of CHIP and T2DM in patients diagnosed with ST-segment elevation myocardial infarction (STEMI).
Methods: Deep-targeted sequencing employing a unique molecular identifier (UMI) for the analysis of 42 CHIP mutations-achieving an impressive mean depth of coverage at 1000 × -was conducted on a cohort of 1430 patients diagnosed with acute myocardial infarction (473 patients with T2DM and 930 non-DM subjects).
Cell Genom
January 2025
Early Cancer Institute, University of Cambridge, Cambridge, UK. Electronic address:
The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!