In this work, a novel multilayer solid electrolyte interphase (SEI) is demonstrated to prolong the durability of a lithium-metal anode. It is generated via reducing lithium bis(oxalate) borate (LiBOB) and fluoroethylene carbonate (FEC) in the electrolyte containing them as additives. The as-obtained SEI could be roughly divided into three layers: the polycarbonates surface membrane, LiF-rich middle layer, and B-containing polymer bottom film corresponding to their sequentially reductive potentials of 0.8, 1.55, and 1.8 V vs Li/Li, respectively. This special structure prolongs the durability of lithium-metal anode since the elastic bottom layer could buffer the influence of volumetric variation and the LiF-rich middle layer could suppress Li dendrite growth and electrolyte permeation. Benefiting from the protection of this multilayer SEI, LiNiCoAlO/Li batteries with ultrahigh cathode loading of ∼4.5 mAh cm stably operate for 200 cycles with the accumulated capacity of 750 mAh cm and the coulombic efficiency of 99.78%. This approach provides a simple and efficient strategy to hover lithium-metal anode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c12393 | DOI Listing |
Chem Commun (Camb)
December 2024
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
High-energy lithium metal batteries (LMBs) have received ever-increasing interest. Among them, coupling lithium metal (Li) with nickel-rich material, LiNiMnCoO (NMCs, ≥ 0.6, + + = 1), is promising because Li anodes enable an extremely high capacity (∼3860 mA h g) and the lowest redox potential (-3.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Featured with the highest possible energy density, anode-free lithium-metal batteries (AFBs) are still challenged by the fast capacity decay, especially for the ones operated in commercial carbonate electrolytes, which can be ascribed to the poor stability and continual broken/formation of the solid-electrolyte interface (SEI) formed on the anode side. Here, sacrificial additives, which have low solubility in carbonate electrolytes and can be continuously released, are proposed for AFBs. The sacrificial and continuously-releasing feature gifts the additives the capability to form and heal the SEI during the long-term cycling process, thus minimizing the loss of active Li and enabling the AFLMBs with high loading LiNiCoMnO (21.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Physics, Nanchang University, Nanchang 330031, China. Electronic address:
Polyvinylidene fluoride (PVDF) materials have been widely investigated as polymer matrix for solid polymer electrolytes (SPEs) due to their high dielectric constant, electroactive effect (piezo-, pyro-, and ferroelectricity), and excellent thermal stability. However, the poor interface compatibility caused by highly reactive residual solvents and unsatisfactory ionic conductivity owing to sluggish Li transport kinetics are principal bottlenecks impeding the further development of PVDF-based electrolytes. Herein, we design a PVDF-based electrolytes with the assistance of hydrophilic-amorphous silica (HA-SiO).
View Article and Find Full Text PDFPLoS One
December 2024
School of Chemistry and Materials Engineering, Huizhou University, Huizhou, China.
The issue of long charging time for electric vehicles has been a matter of serious concern, and the problem is mainly stemmed from the graphite anode. The slow kinetics of pure graphite can lead to the formation of the lithium metal during fast charging, which triggers cycle degradation and safety issues of electric vehicles. In order to ameliorate the fast charging issue, a spherical hard carbon/graphite porous electrode is devised.
View Article and Find Full Text PDFSmall
December 2024
College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China.
Biomass with naturally ion-conducting segments (e.g., hydroxyl) holds promise for sustainable batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!