Visualization of the Skeletal Muscle Stem Cell Niche in Fiber Bundles.

Curr Protoc

Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.

Published: October 2021

Skeletal muscle stem cells (MuSCs) reside in a complex niche composed of the muscle fiber plasma membrane and the laminin-rich basal lamina surrounded by the microvasculature, as well as different supportive cell types such as fibro-adipogenic progenitors residing in the interstitial extracellular matrix. Within the first few hours after tissue damage, MuSCs undergo cytoskeletal rearrangements and transcriptional changes that prime the cells for activation. Due to their time-consuming nature, enzymatic methods for liberation of single muscle fibers with fully quiescent MuSCs are challenging. Moreover, during enzymatic digestion, important niche components including the microvasculature and the collagenous interstitial matrix are destroyed. Here, we provide a method for the visualization of MuSCs on muscle fibers in their intact niche. Our method relies on mechanical teasing of fiber bundles from fixed skeletal muscles. We demonstrate that teased muscle fiber bundles allow the investigator to capture a representative snapshot of the MuSC niche in skeletal muscle, and outline how stem cell morphology and different microenvironmental components can be visualized. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of fiber bundles Basic Protocol 2: Immunofluorescence staining of MuSCs on fiber bundles Support Protocol: Preparation of Sylgard dishes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291523PMC
http://dx.doi.org/10.1002/cpz1.263DOI Listing

Publication Analysis

Top Keywords

fiber bundles
20
skeletal muscle
12
muscle stem
8
stem cell
8
muscle fiber
8
muscle fibers
8
basic protocol
8
muscle
7
fiber
6
niche
5

Similar Publications

Flexible infrared image fiber bundles (FBs) are capable of delivering thermal images of areas that are difficult for ordinary thermal cameras to access while making the imaging systems compact and lightweight. Thus, FB-based thermal imaging systems show great potential in some important applications, such as infrared endoscopy, aircraft infrared warning, and satellite remote sensing. In most applications, FBs are required to have high overall transmittance (OT) and high spatial resolution (), but the fabrication of such high-performance FBs is still a challenge.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the collagen fiber structure of the subcutaneous fascia, a connective tissue layer between the skin and epimysium.

Methods: Fascia samples with varying extensibility were examined using biochemical and microscopic methods.

Results: Loose fascia, the more extensible type, displayed sparsely distributed collagen fibers, while dense fascia showed tightly packed collagen fiber bundles.

View Article and Find Full Text PDF

Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI.

Cell Rep Methods

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China. Electronic address:

To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable.

View Article and Find Full Text PDF

Cytoplasmic streaming of symbiotic algae in the ciliate Stentor pyriformis.

Protist

January 2025

Chiba Institute of Science, 3 Shiomi-cho, Choshi, Chiba 288-0025, Japan. Electronic address:

Stentor pyriformis is a unicellular organism whose inherent green-algal symbionts can be utilized in evolutionary and cytological studies. The cytoplasm contains symbiotic algae and starch granules, which are in constant motion. The habitats of the ciliate S.

View Article and Find Full Text PDF

Optical Fiber Displacement Sensors (OFDSs) provide several advantages over conventional sensors, including their compact size, flexibility, and immunity to electromagnetic interference. These features make OFDSs ideal for use in confined spaces, such as turbines, where direct laser access is impossible. A critical aspect of OFDS performance is the geometry of the fiber bundle, which influences key parameters such as sensitivity, range, and dead zones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!