Multicomponent-based hydrogels are well established candidates for biomedical applications. However, certain aspects of multicomponent systems, e.g., crosslinking, structural binding, network formation, proteins/drug incorporation, etc., are challenging aspects to modern biomedical research. The types of crosslinking and network formation are crucial for the effective combination of multiple component systems. The creation of a complex system in the overall structure and the crosslinking efficiency of different polymeric chains in an organized fashion are crucially important, especially when the materials are for biomedical applications. Therefore, the engineering of hydrogel has to be, succinctly understood, carefully formulated, and expertly designed. The different crosslinking methods in use, hydrogen bonding, electrostatic interaction, coordination bonding, and self-assembly. The formations of double, triple, and multiple networks, are well established. A systematic study of the crosslinking mechanisms in multicomponent systems, in terms of the crosslinking types, network formation, intramolecular bonds between different structural units, and their potentials for biomedical applications, is lacking and therefore, these aspects require investigations. To this end, the present review, focuses on the recent advances in areas of the physical, chemical, and enzymatic crosslinking methods that are often, employed for the designing of multicomponent hydrogels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202100232 | DOI Listing |
Curr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
Biomacromolecules
January 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, PR China.
Biomolecular motors are dynamic systems found in organisms with high energy conversion efficiency. FF-ATPase is a rotary biomolecular motor known for its near 100% energy conversion efficiency. It utilizes the synthesis and hydrolysis of ATP to induce conformational changes in motor proteins, thereby converting chemical energy into mechanical motion.
View Article and Find Full Text PDFSmall
January 2025
Nanotechnology and Bio-Engineering Research Group, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland.
The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.
View Article and Find Full Text PDFSmall Methods
January 2025
Dept. Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
The integration of Machine Learning (ML) with super-resolution microscopy represents a transformative advancement in biomedical research. Recent advances in ML, particularly deep learning (DL), have significantly enhanced image processing tasks, such as denoising and reconstruction. This review explores the growing potential of automation in super-resolution microscopy, focusing on how DL can enable autonomous imaging tasks.
View Article and Find Full Text PDFMol Ther
January 2025
Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan. Electronic address:
Transgene expression in stem cells is a powerful means of regulating cellular properties and differentiation into various cell types. However, existing vectors for transgene expression in stem cells suffer from limitations such as the need for genomic integration, the transient nature of gene expression, and the inability to temporally regulate transgene expression, which hinder biomedical and clinical applications. Here we report a new class of RNA virus-based vectors for scalable and integration-free transgene expression in mouse embryonic stem cells (mESCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!