We report on fully electrochemical flow-through synthesis of Prussian Blue based nanozymes defeating peroxidase in terms of more than 200 times higher catalytic rate constant (k = 6 × 10 s). Being reagentless, reproducible, simple and scalable, the proposed approach blazes new trails for the electrosynthesis of functional conductive and electroactive nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt02107a | DOI Listing |
J Biochem Mol Toxicol
February 2025
Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
Lycopene (LYC) is an extremely powerful antioxidant with the potential to treat a range of diseases and to inhibit ferroptosis. This research aims to elucidate how LYC impacts polycystic ovarian syndrome (PCOS) and the action mechanisms. A PCOS rat model was constructed by injecting DHEA.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Battery Technology Center, Harbin Institute of Technology, Weihai 264209, China.
Prussian blue analogs (PBAs) as cathode material for sodium-ion batteries have attracted widespread attention due to their affordability, simple synthesis, and high theoretical capacity. Nevertheless, the oxidation of Fe and sodium loss lead to poor electrochemical properties which restrict the practical use of PBAs. Herein, a simple coprecipitation approach based on sodium salt-reduction-assisted synthesis was proposed to construct high-sodium PBAs.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
Background: Ulcerative colitis (UC) is a chronic and recurrent digestive tract disease that can lead to significant morbidity and mortality. The pathogenesis of UC is intricately associated with the presence of reactive oxygen species (ROS). Prussian blue (PB), an inorganic nanozyme with potent antioxidant properties, has been extensively applied in the treatment of various inflammatory conditions and tumors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.
Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!