Confined Ionic Liquid-Built Gas Transfer Pathways for Efficient Propylene/Propane Separation.

ACS Appl Mater Interfaces

State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.

Published: October 2021

The separation of light olefins from paraffins using membrane technology is highly desired; however, synthetic polymer membranes generally suffer a pernicious trade-off between permeability and selectivity. Herein, we show that this limitation can be overcome by constructing selective gas transfer pathways in a polymer matrix, as demonstrated by incorporating composites of ionic liquids and zeolitic imidazolate frameworks (ZIFs) to form mixed-matrix membranes. Using propylene/propane separation as a model system, dramatic improvements in the propylene permeability of 218.4 Barrer and propylene/propane separation factor of 45.7 were achieved compared to the values obtained using individual components as a filler. The synergy between the high solubility of the gas molecules in ionic liquids and the size screening ability of ZIF exacerbates the difference in the transmission of propylene and propane, thus leading to superior separation performance. This work presents a promising strategy for the design of membranes for efficient gas separation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c15108DOI Listing

Publication Analysis

Top Keywords

propylene/propane separation
12
gas transfer
8
transfer pathways
8
ionic liquids
8
separation
6
confined ionic
4
ionic liquid-built
4
gas
4
liquid-built gas
4
pathways efficient
4

Similar Publications

Metal-organic framework membranes with scale-like structure for efficient propylene/propane separation.

Nat Commun

November 2024

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, P. R. China.

The fabrication of metal-organic framework (MOF) membranes with high propylene/propane selectivity, high mechanical endurance and ease of scaling up always remains a challenge. Inspired by the ubiquitous biological wear-resistant structure, here we show ZIF-67 membranes with a tangential-normal interlaced structure (TN-ZIF-67) for one-step acquisition of polymer-grade propylene, which is endowed with the merits of intergranular defect elimination, partial ZIF-67 lattice flexibility restriction and anti-wear of the membrane surface. The TN-ZIF-67 membrane exhibits an optimal propylene/propane mixture separation factor of 221, and the separation performance remained unchanged after 1.

View Article and Find Full Text PDF

Purifying alkenes (mainly ethylene and propylene) by removing their corresponding alkanes is crucial yet challenging in the chemical industry. Selective physisorption shows promise for effective separation but demands precise pore dimensions and/or pore chemistry of adsorbents. We report an yttrium-based metal-organic framework, Y(TCHB)(OH)·2HO (HIAM-317, TCHB = 3,3',5,5'-tetrakis(4-carboxyphenyl)-2,2',4,4',6,6'-hexamethyl-1,1'-biphenyl), that can separate ethylene/ethane and propylene/propane mechanisms regulated by coordinated water arrays.

View Article and Find Full Text PDF

Developing porous adsorbents for the complete sieving of propylene/propane mixtures represents an alternative method to energy-intensive cryogenic distillation processes. However, the similar physical properties of these molecules and the inherent trade-off among adsorption capacity, selectivity, diffusion kinetic and host-guest binding interactions in molecular sieving adsorbents makes their separation challenging. Here we report the separation of propylene/propane mixtures through a crystalline porous material (HAF-1) that features channels and shrinkage throats-the latter defined as narrower channels that connect the main channels and a molecular pocket-where the throat aperture is between the kinetic diameters of propylene and propane.

View Article and Find Full Text PDF

Optimizing Propylene/Propane Sieving Separation through Gate-Pressure Control within a Flexible Organic Framework.

Angew Chem Int Ed Engl

November 2024

Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China).

The separation of propylene (CH) and propane (CH) is of great significance in the chemical industry, which poses a challenge due to their almost identical kinetic diameters and similar physical properties. In this work, we synthesized an ultramicroporous flexible hydrogen-bonded organic framework (named HOF-FJU-106) by using molecule 2,3,6,7-tetra (4-cyanophenyl) tetrathiafulvalene (TTF-4CN). The formation of the dimer causes the TTF-4CN molecular to bend and weaken π-stacked interactions, coupled with the flexibility of C≡N H-C hydrogen bonds, which leads to reversible conversion between open and closed frameworks through the mutual slip of adjacent layers/columns under activation and stimulation of gas molecules.

View Article and Find Full Text PDF

Twinned Metal-Organic Framework Nanoplates for Hydrocarbon Separation Membranes.

Small Methods

November 2024

Department of Chemical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul, 06978, Republic of Korea.

Article Synopsis
  • Filler morphology control significantly improves gas separation in mixed matrix membranes (MMMs) through the design of a vertical transport channel utilizing crystal twinning in ZIF nanoplate.
  • Twinned ZIF-8 (TZIF-8) enhances propylene/propane separation when added to 6FDA-DAM polymer, achieving a propylene permeability of 40 Barrer and selectivity of 82.
  • The study indicates that the structure of the TZIF-8 provides effective pathways for desired gas molecules while creating barriers for undesired ones, outperforming previous MMMs and matching polycrystalline ZIF-8 membranes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!