Purpose: Esophageal cancer is the second most common cancer among men and women. There is a need to systematically assess the current evidence to map out the contribution of genetic factors in the development of esophageal squamous cell carcinoma (ESCC).

Methods: A literature search was carried out on published and unpublished studies up to August 2021 in Medline (PubMed), Embase (Ovid), Scopus, Proquest, Web of Science, and Google scholar. Studies that have reported the frequency of genetic mutations in ESCC were included in this study.

Results: A total of 1238 titles were retrieved through searches, and finally, 56 articles, including 8114 samples, met our predefined inclusion criteria. Of the included studies, 31 were conducted in China, 12 in Japan, and the remaining were conducted in various nations, including Brazil, Korea, and Iran. Most of our included studies evaluated the TP53 (n = 37 studies) and PIK3CA (n = 30 studies) gene mutations. TP53 (68.6%; 95% CI: 61.6-74.9), CCND1 (39.3%; 95% CI: 26.2-54.1), MDM2 (24.9%; 95% CI: 9.5-51.0), NOTCH1/2/3 (17.9%; 95% CI: 15.0-21.2), KMT2D (17.4%; 95% CI: 12.4-23.8), CDKN2A (15.0%; 95% CI: 8.1-26.1), PIK3CA (13.8%; 95% CI: 10.3-18.1), FAT1 (13.3%; 95% CI: 11.7-15.0), and EGFR (9.9%; 95% CI: 5.6-17.0) were the most common involved genetic factors in developing ESCC.

Conclusion: This systematic review and meta-analysis revealed that more than 10% of ESCC patients had changes in TP53, CCND1, MDM2, NOTCH1/2/3, KMT2D, CDKN2A, PIK3CA, and FAT1 genes, which can highlight their role in developing ESCC. TP53, CCND1, and MDM2 are the most prevalent, demonstrating 68.6%, 39.3%, and 24.9% of the mutations in ESCC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12029-021-00721-yDOI Listing

Publication Analysis

Top Keywords

95%
9
systematic review
8
review meta-analysis
8
genetic mutations
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
genetic factors
8
mutations escc
8
included studies
8

Similar Publications

Article Synopsis
  • The study measured fibrinogen fluorescence at temperatures between 20 and 80 degrees Celsius across different pH levels.
  • It was found that raising the temperature from 20 to 40 degrees Celsius did not change the structure of fibrinogen in solutions with pH between 4.5 and 9.3.
  • However, temperatures between 40 to 50 degrees Celsius caused some structural changes in neutral solutions, and temperatures above 50-55 degrees Celsius led to significant denaturation of the fibrinogen molecule.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!