Background: Early neurorehabilitation improves outcomes in patients with disorders of consciousness (DoC) after brain injury, but its applicability in COVID-19 is unknown. We describe our experience implementing an early neurorehabilitation protocol for patients with COVID-19-associated DoC in the intensive care unit (ICU) and evaluate factors associated with recovery.

Methods: During the initial COVID-19 surge in New York City between March 10 and May 20, 2020, faced with a disproportionately high number of ICU patients with prolonged unresponsiveness, we developed and implemented an early neurorehabilitation protocol, applying standard practices from brain injury rehabilitation care to the ICU setting. Twenty-one patients with delayed recovery of consciousness after severe COVID-19 participated in a pilot early neurorehabilitation program that included serial Coma Recovery Scale-Revised (CRS-R) assessments, multimodal treatment, and access to clinicians specializing in brain injury medicine. We retrospectively compared clinical features of patients who did and did not recover to the minimally conscious state (MCS) or better, defined as a CRS-R total score (TS) ≥ 8, before discharge. We additionally examined factors associated with best CRS-R TS, last CRS-R TS, hospital length of stay, and time on mechanical ventilation.

Results: Patients underwent CRS-R assessments a median of six (interquartile range [IQR] 3-10) times before discharge, beginning a median of 48 days (IQR 40-55) from admission. Twelve (57%) patients recovered to MCS after a median of 8 days (IQR 2-14) off continuous sedation; they had lower body mass index (p = 0.009), lower peak serum C-reactive protein levels (p = 0.023), higher minimum arterial partial pressure of oxygen (p = 0.028), and earlier fentanyl discontinuation (p = 0.018). CRS-R scores fluctuated over time, and the best CRS-R TS was significantly higher than the last CRS-R TS (median 8 [IQR 5-23] vs. 5 [IQR 3-18], p = 0.002). Earlier fentanyl (p = 0.001) and neuromuscular blockade (p = 0.015) discontinuation correlated with a higher last CRS-R TS.

Conclusions: More than half of our cohort of patients with prolonged unresponsiveness following severe COVID-19 recovered to MCS or better before hospital discharge, achieving a clinical benchmark known to have relatively favorable long-term prognostic implications in DoC of other etiologies. Hypoxia, systemic inflammation, sedation, and neuromuscular blockade may impact diagnostic assessment and prognosis, and fluctuations in level of consciousness make serial assessments essential. Early neurorehabilitation of these patients in the ICU can be accomplished but is associated with unique challenges. Further research should evaluate factors associated with longer-term neurologic recovery and benefits of early rehabilitation in patients with severe COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491764PMC
http://dx.doi.org/10.1007/s12028-021-01359-1DOI Listing

Publication Analysis

Top Keywords

early neurorehabilitation
24
severe covid-19
16
brain injury
12
factors associated
12
patients
10
crs-r
9
disorders consciousness
8
consciousness severe
8
neurorehabilitation protocol
8
evaluate factors
8

Similar Publications

Objectives: Blood pressure (BP) management is challenging in patients with acute ischemic supratentorial stroke undergoing recanalization therapy due to the lack of established guidelines. Assessing dynamic cerebral autoregulation (dCA) may address this need, as it is a bedside technique that evaluates the transfer function phase in the very low-frequency (VLF) range (0.02-0.

View Article and Find Full Text PDF

Introduction: Body awareness (BA) is the process of gaining sensory awareness based on the physiological states and actions of the body. It is influenced by an individual's attitudes, perceptions, beliefs, and experiences within the social and cultural contexts. Following a stroke, impairments in BA are thought to be widespread and could have a significant impact on recovery results.

View Article and Find Full Text PDF

Structural and functional connectomics of the olfactory system in Parkinson's disease: a systematic review.

Parkinsonism Relat Disord

December 2024

Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy. Electronic address:

Olfactory dysfunction, affecting 75-90 % of Parkinson's disease (PD) patients, holds significant predictive value for PD development. Advanced imaging techniques, such as diffusion MRI (dMRI) and functional MRI (fMRI), offer insights into structural and functional changes within olfactory pathways. This review summarizes a decade of research on MRI-based connectivity of the olfactory system in PD, focusing on structural and functional alterations in olfactory brain areas and their links to early olfactory processing changes.

View Article and Find Full Text PDF

Unlabelled: Post-stroke cognitive impairments are widespread and significantly reduce the quality of life and rehabilitation prognosis of patients. Clinical observations show a serious variability of cognitive impairments in patients after acute cerebrovascular accident. Thus, the classification of above mentioned disorders, based on which it would be possible to determine the order of individualization of a cognitive rehabilitation program, is currently not available in literature.

View Article and Find Full Text PDF

Background And Objectives: Three phase 3 trials demonstrated the efficacy and safety of atogepant in episodic migraine (EM) and chronic migraine (CM) across 12-week treatment periods. This analysis evaluates improvements in efficacy and functional outcomes in the first 4 weeks of treatment with the oral calcitonin gene-related peptide receptor antagonist, atogepant, for the preventive treatment of migraine.

Methods: ADVANCE, ELEVATE, and PROGRESS were phase 3, multicenter, randomized, double-blind, placebo-controlled 12-week trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!