Multifunctional self-healing hydrogels have recently attracted considerable interest in biomedical applications owing to their diverse properties, including self-healing, adhesion, conduction, antibacterial, and stimulus-response, which can meet various application requirements, ranging from wound dressings and delivery vehicles to the production of scaffolds for tissue repair and regeneration. As a natural polycationic polysaccharide with good biocompatibility, chitosan is widely used in hydrogel formation as there are many amino and hydroxyl groups along the chains that can actively participate in various physical effects and chemical reactions, which enable it to construct self-healing hydrogels and fulfill multiple functions. In this review, the formation of chitosan-based self-healing hydrogels and the related self-healing mechanism are summarized, including Schiff base, metal coordination, ionic and hydrogen bonds, hydrophobic and host-guest interactions, with a focus on the strategies for their multi-functionalization. In the last section, the applications of the chitosan-based self-healing hydrogels in the fields of wound dressings, delivery vehicles, scaffolds, and biological sensors are discussed. Overall, it is highly expected that this review could provide an insight into the prospective development of multifunctional self-healing hydrogels for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1tb01363g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!