Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells.

J Orthop Translat

Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, 46100, Burjassot, Valencia, Spain.

Published: September 2021

Background: Osteoarthritis (OA) is a joint disease characterized by cartilage degradation, low-grade synovitis and subchondral bone alterations. In the damaged joint, there is a progressive increase of oxidative stress leading to disruption of chondrocyte homeostasis. The modulation of oxidative stress could control the expression of inflammatory and catabolic mediators involved in OA. We have previously demonstrated that extracellular vesicles (EVs) present in the secretome of human mesenchymal stem cells from adipose tissue (AD-MSCs) exert anti-inflammatory and anti-catabolic effects in OA chondrocytes. In the current work, we have investigated whether AD-MSC EVs could regulate oxidative stress in OA chondrocytes as well as the possible contribution of peroxiredoxin 6 (Prdx6).

Methods: Microvesicles (MV) and exosomes (EX) were isolated from AD-MSC conditioned medium by differential centrifugation with size filtration. The size and concentration of EVs were determined by resistive pulse sensing. OA chondrocytes were isolated from knee articular cartilage of advanced OA patients. 4-Hydroxynonenal adducts, IL-6 and MMP-13 were determined by enzyme-linked immunosorbent assay. Expression of Prdx6 and autophagic markers was assessed by immunofluorescence and Western blotting. Prdx6 was downregulated in AD-MSCs by transfection with a specific siRNA.

Results: MV and to a lesser extent EX significantly reduced the production of oxidative stress in OA chondrocytes stimulated with IL-1β. Treatment with MV resulted in a dramatic upregulation of Prdx6. MV also enhanced the expression of autophagy marker LC3B. We downregulated Prdx6 in AD-MSCs by using a specific siRNA and then MV were isolated. These Prdx6-silenced MV failed to modify oxidative stress and the expression of autophagy markers. We also assessed the possible contribution of Prdx6 to the effects of MV on IL-6 and MMP-13 production. The reduction in the levels of both mediators induced by MV was partly reverted after Prdx6 silencing.

Conclusion: Our results indicate that EVs from AD-MSCs regulate the production of oxidative stress in OA chondrocytes during inflammation. Prdx6 may mediate the antioxidant and protective effects of MV. This study gives insight into the protective properties of EVs from AD-MSCs in OA chondrocytes. Our findings support the development of novel therapies based on EVs to prevent or treat cartilage degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458778PMC
http://dx.doi.org/10.1016/j.jot.2021.08.003DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
stress chondrocytes
12
mesenchymal stem
8
stem cells
8
cartilage degradation
8
il-6 mmp-13
8
markers assessed
8
production oxidative
8
expression autophagy
8
evs ad-mscs
8

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Background: Infertility is a significant issue in spinal cord injury (SCI) patients. Men with SCI often experience erectile and ejaculatory dysfunctions, and low sperm quality leading to impaired fertility. In this study, we investigated the effectiveness of Erythropoietin (EPO)alginate/chitosan (CH-AL) hydrogel on SCI-induced male rat infertility.

View Article and Find Full Text PDF

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!