A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of 3D printable prosthetic foot to implement nonlinear stiffness behavior of human toe joint based on finite element analysis. | LitMetric

Design of 3D printable prosthetic foot to implement nonlinear stiffness behavior of human toe joint based on finite element analysis.

Sci Rep

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA.

Published: October 2021

Toe joint is known as one of the critical factors in designing a prosthetic foot due to its nonlinear stiffness characteristic. This stiffness characteristic provides a general feeling of springiness in the toe-off and it also affects the ankle kinetics. In this study, the toe part of the prosthetic foot was designed to improve walking performance. The toe joint was implemented as a single part suitable for 3D printing. The various shape factors such as curved shape, bending space, auxetic structure, and bending zone were applied to mimic human foot characteristics. The finite element analysis (FEA) was conducted to simulate terminal stance (from heel-off to toe-off) using the designed prosthetic foot. To find the structure with characteristics similar to the human foot, the optimization was performed based on the toe joint geometries. As a result, the optimized foot showed good agreement with human foot behavior in the toe torque-angle curve. Finally, the simulation conditions were validated by comparing with human walking data and it was confirmed that the designed prosthetic foot structure can implement the human foot function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492630PMC
http://dx.doi.org/10.1038/s41598-021-98839-3DOI Listing

Publication Analysis

Top Keywords

prosthetic foot
20
toe joint
16
human foot
16
foot
10
nonlinear stiffness
8
finite element
8
element analysis
8
stiffness characteristic
8
designed prosthetic
8
human
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!