Objective: The ideal valve substitute for surgical intervention of congenital aortic valve disease in children remains unclear. Data on outcomes beyond 10-15 years after valve replacement are limited but important for evaluating substitute longevity. We aimed to describe up to 25-year death/cardiac transplant by type of valve substitute and assess the potential impact of treatment centre. Our hypothesis was that patients with pulmonic valve autograft would have better survival than mechanical prosthetic.

Methods: This is a retrospective cohort study from the Pediatric Cardiac Care Consortium, a multi-institutional US-based registry of paediatric cardiac interventions, linked with the National Death Index and United Network for Organ Sharing through 2019. Children (0-20 years old) receiving aortic valve replacement (AVR) from 1982 to 2003 were identified. Kaplan-Meier transplant-free survival was calculated, and Cox proportional hazard models estimated hazard ratios for mechanical AVR (M-AVR) versus pulmonic valve autograft.

Results: Among 911 children, the median age at AVR was 13.4 years (IQR=8.4-16.5) and 73% were male. There were 10 cardiac transplants and 153 deaths, 5 after transplant. The 25-year transplant-free survival post AVR was 87.1% for autograft vs 76.2% for M-AVR and 72.0% for tissue (bioprosthetic or homograft). After adjustment, M-AVR remained related to increased mortality/transplant versus autograft (HR=1.9, 95% CI=1.1 to 3.4). Surprisingly, survival for patients with M-AVR, but not autograft, was lower for those treated in centres with higher in-hospital mortality.

Conclusion: Pulmonic valve autograft provides the best long-term outcomes for children with aortic valve disease, but AVR results may depend on a centre's experience or patient selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980112PMC
http://dx.doi.org/10.1136/heartjnl-2021-319597DOI Listing

Publication Analysis

Top Keywords

aortic valve
16
valve replacement
12
pulmonic valve
12
valve
10
long-term outcomes
8
valve substitute
8
valve disease
8
valve autograft
8
transplant-free survival
8
children
5

Similar Publications

The zebrafish is a valuable model organism for studying cardiac development and diseases due to its many shared aspects of genetics and anatomy with humans and ease of experimental manipulations. Computational fluid-structure interaction (FSI) simulations are an efficient and highly controllable means to study the function of cardiac valves in development and diseases. Due to their small scales, little is known about the mechanical properties of zebrafish cardiac valves, limiting existing computational studies of zebrafish valves and their interaction with blood.

View Article and Find Full Text PDF

Transcatheter Aortic Valve-in-Valve Implantation with Newer Generation Evolut Valve by Size of Failed Bioprosthesis.

Anatol J Cardiol

January 2025

Department of Cardiothoracic Surgery Research, Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA ; Department of Cardiothoracic Surgery, Lankenau Heart Institute, Main Line Health Wynnewood, Pennsylvania, USA.

Background: To evaluate the clinical outcomes of valve-in-valve transcatheter aortic valve replacement (ViV TAVR) with newer-generation self-expanding Evolut valves according to the size of the failed surgical bioprosthesis.

Methods: This single-center retrospective study evaluated consecutive patients undergoing ViV TAVR with the Evolut Pro/Pro+/Fx between 2018 and 2022. These patients were compared based on the true internal diameter (ID) of the failed bioprosthesis, specifically ≤19 mm (small group) vs.

View Article and Find Full Text PDF

Background: Electrocardiograms (EKGs) are routinely performed in pregnant patients with pre-existing cardiovascular disease. However, in pregnant patients with congenital heart disease (CHD), EKG changes during gestation have not been explored.

Methods: We performed a retrospective study of pregnant patients with CHD enrolled in the STORCC initiative.

View Article and Find Full Text PDF

Simultaneous gastroepiploic artery to right coronary artery bypass and trans-catheter aortic valve implantation: case series.

Gen Thorac Cardiovasc Surg Cases

January 2025

Department of Thoracic and Cardiovascular Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan.

Patients with coronary artery disease undergoing trans-catheter aortic valve implantation (TAVI) often receive TAVI alone. However, in cases of severe coronary lesions or anticipated difficulty in coronary access post-TAVI, percutaneous coronary intervention or coronary artery bypass grafting may be necessary. We performed simultaneous gastroepiploic artery to posterior descending artery bypass and TAVI in two patients with severe calcification of the right coronary artery ostium which is unsuitable for percutaneous intervention.

View Article and Find Full Text PDF

Early clinical outcomes of transcatheter aortic valve implantation using the NAVITOR system.

Cardiovasc Interv Ther

January 2025

Division of Cardiology, Department of Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan.

Transcatheter aortic valve implantation (TAVI) using the NAVITOR system has been relatively underreported due to its recent introduction in Japan. This study aimed to assess the short-term outcomes of TAVI with the NAVITOR in real-world clinical practice. Patients with severe aortic stenosis who underwent TAVI using the NAVITOR system at our institution between December 2022 and December 2023 were prospectively enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!