Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lubricin, a glycoprotein encoded by the proteoglycan 4 (PRG4) gene, is an essential boundary lubricant that reduces friction between articular cartilage surfaces. The loss of lubricin subsequent to joint injury plays a role in the pathogenesis of posttraumatic osteoarthritis. In this study, we describe the development and evaluation of an adeno-associated virus (AAV)-based PRG4 gene therapy intended to restore lubricin in injured joints. The green fluorescent protein (GFP) gene was inserted the PRG4 gene to facilitate tracing the distribution of the transgene product (AAV-PRG4-GFP) . Transduction efficiency of AAV-PRG4-GFP was evaluated in joint cells, and the conditioned medium containing secreted PRG4-GFP was used for shear loading/friction and viability tests. transduction of joint tissues following intra-articular injection of AAV-PRG4-GFP was confirmed in the mouse stifle joint in a surgical model of destabilization of the medial meniscus (DMM), and chondroprotective activity was tested in a rabbit anterior cruciate ligament transection (ACLT) model. studies showed that PRG4-GFP has lubricin-like cartilage-binding and antifriction properties. Significant cytoprotective effects were seen when cartilage was soaked in PRG4-GFP before cyclic shear loading ( = 3). Polymerase chain reaction and confocal microscopy confirmed the presence of PRG4-GFP DNA and protein, respectively, in a mouse DMM ( = 3 per group). In the rabbit ACLT model, AAV-PRG4-GFP gene therapy enhanced lubricin expression ( = 0.001 vs. AAV-GFP: = 7-14) and protected the cartilage from degeneration ( = 0.014 vs. AAV-GFP: = 9-10) when treatments were administered immediately postoperation, but efficacy was lost when treatment was delayed for 2 weeks. AAV-PRG4-GFP gene therapy protected cartilage from degeneration in a rabbit ACLT model; however, data from the ACLT model suggest that early intervention is essential for efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142765 | PMC |
http://dx.doi.org/10.1089/hum.2021.177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!