Mechanochemical Reactions of Bis(9-methylphenyl-9-fluorenyl) Peroxides and Their Applications in Cross-Linked Polymers.

J Am Chem Soc

Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Published: October 2021

The exploration of mechanochemical reactions has brought new opportunities for the design of functional materials. We synthesized the novel organic peroxide mechanophore bis(9-methylphenyl-9-fluorenyl) peroxide (BMPF) and examined its mechanochromic properties. The mechanism behind its mechanofluorescence was clarified and harnessed in polymer networks that can release the small fluorescent molecule 9-fluorenone upon exposure to a mechanical stimulus. Additionally, polymer networks cross-linked with BMPF units are able to tolerate temperatures up to 110 °C without any change in optical properties or mechanical strength. As mechanophores based on organic peroxide have rarely been documented so far, these fascinating results suggest excellent potential for applications of BMPF in stress-responsive materials. The mechanochemical protocol demonstrated here may provide guiding principles to expand the field of mechanochromic peroxides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c08533DOI Listing

Publication Analysis

Top Keywords

mechanochemical reactions
8
organic peroxide
8
polymer networks
8
reactions bis9-methylphenyl-9-fluorenyl
4
bis9-methylphenyl-9-fluorenyl peroxides
4
peroxides applications
4
applications cross-linked
4
cross-linked polymers
4
polymers exploration
4
exploration mechanochemical
4

Similar Publications

The eXtended Hydrostatic Compression Force Field (X-HCFF) is a mechanochemical approach in which a cavity is used to exert hydrostatic pressure on a target system. The cavity used in this method is set up to represent the van der Waals (VDW) surface of the system by joining spheres sized according to the respective atomic VDW radii. The size of this surface can be varied via a scaling factor, and it can be shown that the compression forces exerted in X-HCFF in its current implementation depend on this factor.

View Article and Find Full Text PDF

Exploration of Quantum Chemistry Methods to Explain Mechanism of Mechanochemical Degradation of Typical Organic Pollutants.

Toxics

December 2024

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.

The high-efficiency ball milling treatment technology primarily combines the excitation of oxidation processes with high-speed physical collisions, thereby promoting the reaction processes and enhancing the degradation effectiveness of materials. This technology has gained widespread attention in recent years for its application in the degradation of organic solid chemical pollutants. In this study, quantum chemical density functional theory (DFT) was employed to first analyze the impact of electron addition and subtraction on molecular chemical bonds.

View Article and Find Full Text PDF

Controlled Introduction of sp3 Quantum Defects in Fluorescent Carbon Nanotubes by Mechanochemistry.

Angew Chem Int Ed Engl

January 2025

Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44801, Bochum, GERMANY.

Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence.

View Article and Find Full Text PDF

Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.

View Article and Find Full Text PDF

Mechanochemistry: Unravelling the Impact of Metal Leaching in Organic Synthesis.

ChemSusChem

January 2025

Universita degli study di cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, SS 554 bivio per Sestu, 09042, Monserrato, ITALY.

Solvent-free techniques have gained considerable attention in recent years due to their environmental advantages and potential to enable chemical reactivities beyond the reach of traditional solution-based methods. Mechanochemistry has emerged as a groundbreaking approach to drive sustainable chemical processes. Despite its promise, some challenges still need to be explored, including the overlooked issue of material leaching during grinding, a phenomenon in which components from milling media or reaction vessels, such as stainless steel, unintentionally alter reaction outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!