Interference-free, lightweight wireless neural probe system for investigating brain activity during natural competition.

Biosens Bioelectron

Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, Republic of Korea. Electronic address:

Published: January 2022

Competition is one of the most fundamental, yet complex, conflicts between social animals, and previous studies have indicated that the medial prefrontal cortex (mPFC) region of a brain is involved in social interactions. However, because we do not have a lightweight, wireless recording system that is free of interference, it is still unclear how the neural activity of the mPFC region is involved in the diverse, interacting behaviors that comprise competition. Herein, we present an interference-free, lightweight, wireless neural probe system that we applied to two mice to measure mPFC neural activities during a food competition test. In the test, we categorized 18 behavioral repertoires expressed by the mice. From the analysis of the neural signals during each repetition of the test, we found that the mPFC neural activity had the most positive correlation with goal-driven competitive behaviors, such as guarding resources and behaviors related to the extortion of resources. Remarkably, we found that the neural activity associated with guarding behavior was higher than that of extorting behavior, and this highlighted the importance of resource-guarding behavior for winning the competition, i.e., 'winning a trophy is hard, but keeping it is harder'. Our approach in which a wireless system is used will enable in-depth studies of the brains of mice in their natural social interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113665DOI Listing

Publication Analysis

Top Keywords

lightweight wireless
12
neural activity
12
interference-free lightweight
8
wireless neural
8
neural probe
8
probe system
8
mpfc region
8
social interactions
8
mpfc neural
8
neural
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!