A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Yield prediction of "Thermal-dissolution based carbon enrichment" treatment on biomass wastes through coupled model of artificial neural network and AdaBoost. | LitMetric

The "Thermal-dissolution based carbon enrichment" was proven as an efficient and homogenizing treatment method in converting biomass wastes into similar high-quality carbon materials. However, their yields varied significantly with respect to the different experimental parameters employed. It is therefore imperative to establish the correlation between product yield and experimental parameters for material selection and condition optimization. In this study, Adaboost was coupled with an artificial neural network algorithm to precisely describe the abovementioned correlation. The results demonstrated the effectiveness of this model through its outstanding predicting performance for all the products, especially, the coefficient of determination in predicting the yield of Residue was as high as 0.97. Additionally, the coupling effect of temperature and time was observed. This study not only validates a close correlation between selected experimental parameters and product yields, but also provides a quick and reliable way for material selection and condition optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.126083DOI Listing

Publication Analysis

Top Keywords

experimental parameters
12
"thermal-dissolution based
8
based carbon
8
carbon enrichment"
8
biomass wastes
8
artificial neural
8
neural network
8
material selection
8
selection condition
8
condition optimization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!