Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbohydrate-lectin interactions and glycol-molecule-driven self-assembly are powerful yet challenging strategies to create supramolecular nanostructures for biomedical applications. Herein, we develop a modular approach of micellization with a small molecular mannosylated-calix[4]arene synthetic core, CA-Man3, to generate nano-micelles, CA-Man3-NPs, which can target cancer cell surface receptors and facilitate the delivery of hydrophobic cargo. The oligomeric nature of the calix[4]arene enables the dynamic self-assembly of calix[4]arene (CA), where an amphiphile, functionalized with mannose units (CA-glycoconjugates) in the upper rim and alkylated lower rim, afforded the CA-Man3-NPs in a controllable manner. The presence of thiourea units between calixarene and tri-mannose moiety facilitated the formation of a stable core with bidentate hydrogen bonds, which in turn promoted mannose receptor targeted uptake and helped in the intracellular pH-responsive release of antineoplastic doxorubicin (Dox). Physiochemical features including the stability of the nanomicelle could circumvent the undesirable leakage of the cargoes, ensuring maximum therapeutic output with minimum off-targeted toxicity. Most importantly, surface-enhanced Raman scattering (SERS) was utilized for the first time to evaluate the critical micelle concentration during the formation, cellular uptake and intracellular drug release. The present study not only provides an architectural design of a new class of organic small molecular nanomicelles but also unveils a robust self-assembly approach that paves the way for the delivery of a wide range of hydrophobic chemotherapeutic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2021.09.038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!