In this article, a new zinc-containing ionic liquid (IL) [HMMIm][ZnCl] (HMMIm = 1-hexyl-2,3-dimethyl-imidazolium) is designed, which acts as a multifunctional source for the interfacial engineering of ZnS nanodots (NDs). Given the electrostatic interaction driven by the imidazolium cation, the steric effect of the alkyl chain, and the released Zn ion from the IL, [HMMIm][ZnCl] shows great advantages in controlling the formation of ZnS NDs. Based on this strategy, a nanocomposite consisting of homodispersed ZnS NDs anchored on sulfur/nitrogen dual-doped reduced graphene oxide (ZnS-NDs@SNG) is prepared. When evaluated as an anode material for lithium-ion batteries (LIBs), the nanocomposite delivers high reversible specific capacity, excellent high-rate performance, and superior cycling life. In particular, a discharge capacity of 648.1 mA h g can be achieved at a high current density (10.0 A g) over 5000 cycles. Benefitting from the multifunctional IL and the simple synthesis protocol, the IL-assisted interfacial engineering strategy will enable a new avenue for the controllable synthesis of metal-sulfide-based anode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt02859fDOI Listing

Publication Analysis

Top Keywords

interfacial engineering
12
engineering zns
8
zns nanodots
8
zns nds
8
multifunctional ionic
4
ionic liquid-assisted
4
liquid-assisted interfacial
4
zns
4
nanodots ultrastable
4
ultrastable high-rate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!