A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performing sequential forward selection and variational autoencoder techniques in soil classification based on laser-induced breakdown spectroscopy. | LitMetric

Performing sequential forward selection and variational autoencoder techniques in soil classification based on laser-induced breakdown spectroscopy.

Anal Methods

Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua, 321004, China.

Published: October 2021

The feasibility and accuracy of several combination classification models, , quadratic discriminant analysis (QDA), random forest (RF), Bernoulli naïve Bayes (BNB), and support vector machine (SVM) classification models combined with either sequential feature selection (SFS) or dimensionality reduction methods, for classifying soil with laser-induced breakdown spectroscopy (LIBS) had been explored in this study. Each algorithm combination was compared to assess their classification performance. After eliminating the irrelevant features of the data using sequential feature selection (SFS), the performances were all improved for the studied four classification models, and the best accuracy reached 97.88% by SFS-SVM. The dimensions of the data were then reduced using variational autoencoder (VAE), truncated singular value decomposition (TSVD), and isometric mapping (Isomap), respectively. The classification accuracy improved for all combination models with dimensionality reduction, and impressive accuracies of 98.12% from TSVD-SVM and 98.24% from VAE-SVM were obtained. These results demonstrate an effective way to reduce uncorrelated features, high dimensionality, and redundant information in the LIBS dataset. In addition, coupling classification models with feature selection and dimensionality reduction techniques could significantly optimize the classification performance of LIBS.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1ay01257fDOI Listing

Publication Analysis

Top Keywords

classification models
16
feature selection
12
dimensionality reduction
12
variational autoencoder
8
classification
8
laser-induced breakdown
8
breakdown spectroscopy
8
sequential feature
8
selection sfs
8
classification performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!