We have quantum chemically analyzed element-element bonds of archetypal H X-YH molecules (X, Y=C, N, O, F, Si, P, S, Cl, Br, I), using density functional theory. One purpose is to obtain a set of consistent homolytic bond dissociation energies (BDE) for establishing accurate trends across the periodic table. The main objective is to elucidate the underlying physical factors behind these chemical bonding trends. On one hand, we confirm that, along a period (e. g., from C-C to C-F), bonds strengthen because the electronegativity difference across the bond increases. But, down a period, our findings constitute a paradigm shift. From C-F to C-I, for example, bonds do become weaker, however, not because of the decreasing electronegativity difference. Instead, we show that the effective atom size (via steric Pauli repulsion) is the causal factor behind bond weakening in this series, and behind the weakening in orbital interactions at the equilibrium distance. We discuss the actual bonding mechanism and the importance of analyzing this mechanism as a function of the bond distance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298008 | PMC |
http://dx.doi.org/10.1002/chem.202103544 | DOI Listing |
Chem Sci
December 2024
College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia.
The inductive effect is a central concept in chemistry and is often exemplified by the p values of acetic acid derivatives. The reduction in p is canonically attributed to the reduction in the electron density of the carboxylate group through the inductive effect. However, wave functional theory calculations presented herein reveal that the charge density of the carboxylate group is not explained by the inductive effect.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Health Science, University of Ss. Cyril and Methodius, 91701 Trnava, Slovakia.
J Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:
Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Geological Sciences, Pusan National University, Busan 46241, Korea.
Synthetic mordenite is widely used as a molecular sieve, adsorbent, and catalyst. To enhance these functionalities, it is crucial to understand the ion-exchange properties and cation-exchange sites of the zeolite. In this study, we analyzed the structural changes in fully Cs-, Sr-, Cd-, and Pb-exchanged mordenite by using synchrotron X-ray powder diffraction under ambient conditions.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The development of two-dimensional (2D) semiconductors is limited by the lack of doping methods. We propose surface isovalent substitution as an efficient doping mechanism for 2D semiconductors by revealing the evolution of the structure and electronic properties of 2D Se/Te. Because of the different electronegativity of Se and Te, Se substitution for Te at the specific lattice sites introduces electric dipoles and leads to charge redistribution, which lowers the work function and tunes the Te films from p-type to n-type semiconductors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!