Background: Capnography is commonly used for nurse-administered procedural sedation. Distinguishing between capnography waveform abnormalities that signal the need for clinical intervention for an event and those that do not indicate the need for intervention is essential for the successful implementation of this technology into practice. It is possible that capnography alarm management may be improved by using machine learning to create a "smart alarm" that can alert clinicians to apneic events that are predicted to be prolonged.
Objective: To determine the accuracy of machine learning models for predicting at the 15-second time point if apnea will be prolonged (ie, apnea that persists for >30 seconds).
Methods: A secondary analysis of an observational study was conducted. We selected several candidate models to evaluate, including a random forest model, generalized linear model (logistic regression), least absolute shrinkage and selection operator regression, ridge regression, and the XGBoost model. Out-of-sample accuracy of the models was calculated using 10-fold cross-validation. The net benefit decision analytic measure was used to assist with deciding whether using the models in practice would lead to better outcomes on average than using the current default capnography alarm management strategies. The default strategies are the aggressive approach, in which an alarm is triggered after brief periods of apnea (typically 15 seconds) and the conservative approach, in which an alarm is triggered for only prolonged periods of apnea (typically >30 seconds).
Results: A total of 384 apneic events longer than 15 seconds were observed in 61 of the 102 patients (59.8%) who participated in the observational study. Nearly half of the apneic events (180/384, 46.9%) were prolonged. The random forest model performed the best in terms of discrimination (area under the receiver operating characteristic curve 0.66) and calibration. The net benefit associated with the random forest model exceeded that associated with the aggressive strategy but was lower than that associated with the conservative strategy.
Conclusions: Decision curve analysis indicated that using a random forest model would lead to a better outcome for capnography alarm management than using an aggressive strategy in which alarms are triggered after 15 seconds of apnea. The model would not be superior to the conservative strategy in which alarms are only triggered after 30 seconds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527383 | PMC |
http://dx.doi.org/10.2196/29200 | DOI Listing |
JMIR Form Res
January 2025
Department of Computer Science, University of California, Irvine, Irvine, CA, United States.
Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Cardiovascular Surgery, Xijing Hospital, Xi'an, Shaanxi, China.
Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.
Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.
ACS Sens
January 2025
Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada.
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.
Purpose: Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel approach in corneal transplantation over the past two decades. This study aims to identify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop a preoperative predictive model for post-DMEK OHT.
Methods: Patients who underwent DMEK at Gangnam Severance Hospital between 2017 and 2024 were included in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!