Differential Effect of Iron and Myelin on Susceptibility MRI in the Substantia Nigra.

Radiology

From the Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea (H.L., H.J.C.); Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea (M.J.L); and Research Institute for Convergence of Biomedical Science and Technology (T.H.K.) and Departments of Radiology (J.R.) and Neurology (J.H.L.), Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, South Korea.

Published: December 2021

Background The heterogeneous composition of substantia nigra (SN), including iron, nigrosome-1 substructure, and myelinated white matter, complicates the interpretation of MRI signals. Purpose To investigate R2* and quantitative susceptibility mapping (QSM) in the SN subdivisions of participants with Parkinson disease and healthy control subjects. Materials and Methods In this prospective study conducted from November 2018 to November 2019, participants with Parkinson disease and sex-matched healthy control subjects underwent 3-T MRI. R2* and QSM values were measured and compared in the anterior SN and posterior SN at the rostral (superior) and caudal (inferior) levels. Postmortem MRI and histology correlation of midbrain tissues was evaluated to investigate the effect of myelin and iron in the SN on R2* and QSM values. Results Forty individuals were evaluated: 20 healthy control subjects (mean age, 61 years ± 3 [standard deviation]; 10 men) and 20 participants with Parkinson disease (mean age, 61 years ± 4; 10 men). The R2* values of participants with Parkinson disease were higher in all subdivisions of the SN compared with R2* values in healthy control subjects (all < .05). For QSM, no evidence of a difference was found in the rostral posterior SN (healthy control subjects, 54.1 ppb ± 21.0; Parkinson disease, 62.2 ppb ± 19.8; = .49). The combination of rostral R2* and caudal QSM values resulted in an area under the receiver operating characteristic curve of 0.84. R2* values showed higher correlation with QSM values at the caudal level than at the rostral level within each group (all < .001). Postmortem investigation demonstrated that R2* and QSM values showed weak correlation in the myelin-rich areas ( = 0.22 and = 0.36, < .001) and strong correlation in myelin-scanty areas ( ranged from approximately 0.52 to approximately 0.78, < .001) in the SN. Conclusion Considering the iron and myelin distribution in the substantia nigra subdivisions, the subdivisional analysis of substantia nigra using R2* and quantitative susceptibility mapping might aid in specifically differentiating individuals with Parkinson disease from healthy control subjects. © RSNA, 2021

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2021210116DOI Listing

Publication Analysis

Top Keywords

parkinson disease
24
healthy control
24
control subjects
24
qsm values
20
substantia nigra
16
participants parkinson
16
r2* qsm
12
r2* values
12
r2*
9
iron myelin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!