Calcium ions (Ca2+) play a key role in cell signaling across organisms. In plants, a plethora of environmental and developmental stimuli induce specific Ca2+ increases in the cytosol as well as in different cellular compartments including the endoplasmic reticulum (ER). The ER represents an intracellular Ca2+ store that actively accumulates Ca2+ taken up from the cytosol. By exploiting state-of-the-art genetically encoded Ca2+ indicators, specifically the ER-GCaMP6-210 and R-GECO1, we report the generation and characterization of an Arabidopsis (Arabidopsis thaliana) line that allows for simultaneous imaging of Ca2+ dynamics in both the ER and cytosol at different spatial scales. By performing analyses in single cells, we precisely quantified (1) the time required by the ER to import Ca2+ from the cytosol into the lumen and (2) the time required to observe a cytosolic Ca2+ increase upon the pharmacological inhibition of the ER-localized P-Type IIA Ca2+-ATPases. Furthermore, live imaging of mature, soil-grown plants revealed the existence of a wounding-induced, long-distance ER Ca2+ wave propagating in injured and systemic rosette leaves. This technology enhances high-resolution analyses of intracellular Ca2+ dynamics at the cellular level and in adult organisms and paves the way to develop new methodologies aimed at defining the contribution of subcellular compartments in Ca2+ homeostasis and signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491065PMC
http://dx.doi.org/10.1093/plphys/kiab251DOI Listing

Publication Analysis

Top Keywords

ca2+
13
ca2+ dynamics
12
simultaneous imaging
8
cytosolic ca2+
8
long-distance ca2+
8
intracellular ca2+
8
ca2+ cytosol
8
time required
8
imaging cytosolic
4
dynamics reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!