Active sensing is the process of moving sensors to extract task-specific information. Whisker touch is often referred to as an active sensory system as whiskers are moved with purposeful control. Even though whisker movements are found in many species, it is unknown whether any animal can make task-specific movements with their whiskers. California sea lions (Zalophus californianus) make large, purposeful whisker movements and are capable of performing many whisker-related discrimination tasks. Therefore, California sea lions are an ideal species to explore the active nature of whisker touch sensing. Here, we show that California sea lions can make task-specific whisker movements. California sea lions move their whiskers with large amplitudes around object edges to judge size, make smaller, lateral stroking movements to judge texture and make very small whisker movements during a visual task. These findings, combined with the ease of training mammals and measuring whisker movements, makes whiskers an ideal system for studying mammalian perception, cognition and motor control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8627572 | PMC |
http://dx.doi.org/10.1242/jeb.243085 | DOI Listing |
Biology (Basel)
December 2024
South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China.
is one of the largest species of penaeid shrimp. It has a wide distribution of germplasm resources in the South China Sea and the southeastern coastal regions of China, yet its germplasm characteristics remain insufficiently understood. Therefore, we conducted analyses of basic nutritional components, amino acids, fatty acids, antioxidant indices, and genetic diversity in three populations (FmRP, FmSZ, FmSY).
View Article and Find Full Text PDFBiology (Basel)
November 2024
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
Within Polynoidae, a diverse aphroditiform family, the subfamily Macellicephalinae comprises anchialine cave-dwelling and deep-sea scaleworms. In this study, Lepidonotopodinae is synonymized with Macellicephalinae, and the tribe Lepidonotopodini is applied to a well-supported clade inhabiting deep-sea chemosynthetic-based ecosystems. Newly sequenced "genome skimming" data for 30 deep-sea polynoids and the comparatively shallow living is used to bioinformatically assemble their mitogenomes.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Organisms occupy diverse ecological niches worldwide, each with characteristics finely evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as one of Earth's extreme environments, may have adapted to withstand severe conditions, including elevated temperatures and pressure. This study compares the exoskeletons of two vent crustaceans (bythograeid crab sp.
View Article and Find Full Text PDFDev Biol
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. Electronic address:
While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA.
Hypoxia tolerance and its variation with temperature, activity, and body mass, are critical ecophysiological traits through which climate impacts marine ectotherms. To date, experimental determination of these traits is limited to a small subset of modern species. We leverage the close coupling of carbon and oxygen in animal metabolism to mechanistically relate these traits to the carbon isotopes in fish otoliths (δC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!