Using airflow-driven, evaporative gradients to improve sensitivity and fluid control in colorimetric paper-based assays.

Lab Chip

Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.

Published: October 2021

AI Article Synopsis

  • Microfluidic paper-based analytical devices (μPADs) are crucial for point-of-care testing but often lack sensitivity and handling of complex assays.
  • A new airflow-based evaporative method enhances μPAD functionality by increasing sensitivity 100-1000 times through fluid manipulation on paper membranes.
  • This technique has successfully improved multistep assays like LAMP for COVID-19 detection and ELISA, achieving remarkable sensitivity enhancements and clearer results.

Article Abstract

Microfluidic paper-based analytical devices (μPADs) are foundational devices for point-of-care testing, yet suffer from limitations in regards to their sensitivity and capability in handling complex assays. Here, we demonstrate an airflow-based, evaporative method that is capable of manipulating fluid flows within paper membranes to offer new functionalities for multistep delivery of reagents and improve the sensitivity of μPADs by 100-1000 times. This method applies an air-jet to a pre-wetted membrane, generating an evaporative gradient such that any solutes become enriched underneath the air-jet spot. By controlling the lateral position of this spot, the solutes in the paper strip are enriched and follow the air jet trajectory, driving the reactions and enhancing visualization for colorimetric readout in multistep assays. The technique has been successfully applied to drive the sequential delivery in multistep immunoassays as well as improve sensitivity for colorimetric detection assays for nucleic acids and proteins loop-mediated isothermal amplification (LAMP) and ELISA. For colorimetric LAMP detection of the COVID-19 genome, enrichment of the solution on paper could enhance the contrast of the dye in order to more clearly distinguish between the positive and negative results to achieve a sensitivity of 3 copies of SARS-Cov-2 RNAs. For ELISA, enrichment of the oxidized TMB substrate yielded a sensitivity increase of two-to-three orders of magnitude when compared to non-enriched samples - having a limit of detection of around 200 fM for IgG. Therefore, this enrichment method represents a simple process that can be easily integrated into existing detection assays for controlling fluid flows and improving detection of biomarkers on paper.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1lc00542aDOI Listing

Publication Analysis

Top Keywords

improve sensitivity
12
fluid flows
8
detection assays
8
sensitivity
6
assays
5
detection
5
airflow-driven evaporative
4
evaporative gradients
4
gradients improve
4
sensitivity fluid
4

Similar Publications

Globally, drug-impaired driving fatalities now exceed those from drunk driving, urging the need for on-site and roadside detection methods. In this study, a photothermal desorption and reagent-assisted low-temperature plasma ionization miniature ion trap mass spectrometer (PDRA-LTP-ITMS) was developed for on-site detection of drug-impaired driving. The pseudomultiple reaction monitoring (MRM) in PDRA-LTP-ITMS enables continuous ion selection during ion introduction and improved sensitivity to nearly 3-fold compared with the conventional full scan mode.

View Article and Find Full Text PDF

Insulin resistance, a hallmark of type 2 diabetes, accelerates muscle breakdown and impairs energy metabolism. However, the role of Ubiquitin Specific Peptidase 2 (USP2), a key regulator of insulin resistance, in sarcopenia remains unclear. Peroxisome proliferator activated receptor γ (PPARγ) plays a critical role in regulating muscle atrophy.

View Article and Find Full Text PDF

The inversion effect in biological motion suggests that presenting a point-light display (PLD) in an inverted orientation impairs the observer's ability to perceive the movement, likely due to the observer's unfamiliarity with the dynamic characteristics of inverted motion. Vertical dancers (VDs), accustomed to performing and perceiving others to perform dance movements in an inverted orientation while being suspended in the air, offer a unique perspective on this phenomenon. A previous study showed that VDs were more sensitive to the artificial inversion of PLDs depicting dance movements when compared to typical and non-dancers if given sufficient dynamic information.

View Article and Find Full Text PDF

As an effective approach to mitigating urban environmental issues, New Energy Vehicles (NEVs) have become a focal point of research regarding their current development status and future prospects in China. Addressing the significant disparities in the development of the NEVs industry across different cities, this study focuses on ten typical Chinese cities and develops a novel multi-attribute decision-making (MADM) framework to evaluate the prospects of NEVs promotion in these cities. The study first establishes a comprehensive indicator system that covers key dimensions such as economy, policy support, infrastructure, technological innovation, and environment, encompassing five different types of evaluation information.

View Article and Find Full Text PDF

Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!