Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer, with a high predisposition for locally invasive and metastatic cancer. With the objective to reduce cancer metastasis, we developed small molecule inhibitors to target the drivers of metastasis, the Rho GTPases Rac and Cdc42. Of these, MBQ-167 inhibits both Rac and Cdc42 with ICs of 103 and 78 nmol/L, respectively; and consequently, inhibits p21-activated kinase (PAK) signaling, metastatic cancer cell proliferation, migration, and mammosphere growth; induces cell-cycle arrest and apoptosis; and decreases HER2-type mammary fatpad tumor growth and metastasis (Humphries-Bickley and colleagues, 2017). Herein, we used nuclear magnetic resonance to show that MBQ-167 directly interacts with Rac1 to displace specific amino acids, and consequently inhibits Rac.GTP loading and viability in TNBC cell lines. Phosphokinome arrays in the MDA-MB-231 human TNBC cells show that phosphorylation status of kinases independent of the Rac/Cdc42/PAK pathway are not significantly changed following 200 nmol/L MBQ-167 treatment. Western blotting shows that initial increases in phospho-c-Jun and phospho-CREB in response to MBQ-167 are not sustained with prolonged exposure, as also confirmed by a decrease in their transcriptional targets. MBQ-167 inhibits tumor growth, and spontaneous and experimental metastasis in immunocompromised (human TNBC) and immunocompetent (mouse TNBC) models. Moreover, per oral administration of MBQ-167 at 100 mg/kg body weight is not toxic to immunocompetent BALB/c mice and has a half-life of 4.6 hours in plasma. These results highlight the specificity, potency, and bioavailability of MBQ-167, and support its clinical potential as a TNBC therapeutic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8643341PMC
http://dx.doi.org/10.1158/1535-7163.MCT-21-0348DOI Listing

Publication Analysis

Top Keywords

rac cdc42
12
breast cancer
12
mbq-167
8
triple-negative breast
8
metastatic cancer
8
mbq-167 inhibits
8
consequently inhibits
8
tumor growth
8
human tnbc
8
cancer
6

Similar Publications

Spatial and planar profiling of Rac1/Cdc42 signaling in Alzheimer's disease brain.

J Alzheimers Dis

December 2024

Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.

Article Synopsis
  • - The study focuses on the dysregulation of small GTPases Rac1 and Cdc42 in Alzheimer's disease (AD), which are important for maintaining synaptic structures and could be potential therapeutic targets.
  • - Researchers used specific antibodies to assess the activity levels of Rac1/Cdc42 and their downstream effects in brains from a triple transgenic mouse model and human AD samples.
  • - Results showed that Rac1/Cdc42 activity changes vary across different regions of the brain, with decreased activity in certain areas of AD-affected mice and variations also noted in human AD samples, indicating a complex relationship with the disease's progression.
View Article and Find Full Text PDF

A critical area of recent cancer research is the emergence of transition states between normal and cancer that exhibit increased cell plasticity which underlies tumor cell heterogeneity. Pancreatic ductal adenocarcinoma (PDAC) can arise from the combination of a transition state termed acinar-to-ductal metaplasia (ADM) and a gain-of-function mutation in the proto-oncogene . During ADM, digestive enzyme-producing acinar cells acquire a transient ductal epithelium-like phenotype while maintaining their geographical acinar organization.

View Article and Find Full Text PDF

Guanine nucleotide exchange factors and colon neoplasia.

Front Cell Dev Biol

October 2024

Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.

Despite many diagnostic and therapeutic advances, colorectal cancer (CRC) remains the second leading cause of cancer death for men and women in the United States. Alarmingly, for reasons currently unknown, the demographics of this disease have shifted towards a younger population. Hence, understanding the molecular mechanisms underlying CRC initiation and progression and leveraging these findings for therapeutic purposes remains a priority.

View Article and Find Full Text PDF
Article Synopsis
  • - KRAS mutations are prevalent in lung adenocarcinoma among Black Americans, leading to the exploration of Polyisoprenylated Cysteinyl amide Inhibitors (PCAIs) as potential therapies to disrupt hyperactive G-protein signaling caused by mutated RAS proteins.
  • - Among 17 PCAIs tested, NSL-YHJ-2-27 and NSL-YHJ-2-46 demonstrated significant potency in affecting KRAS-mutated lung cancer cells, with EC50 values of 2.7 μM and 3.3 μM, and notable changes in MAPK pathway enzyme phosphorylation.
  • - Treatment with these PCAIs led to decreased levels of key G-proteins linked to cell migration
View Article and Find Full Text PDF

Objective: To elucidate the underlying mechanism of iron deficiency augmented Angiotensin II-induced aortic medial degeneration.

Methods: ApoE mice were randomly divided into four groups: normal control group (NC group), Angiotensin II (Ang II) subcutaneous pumped alone Group (Ang II group), iron deficiency (ID) group (ID group) and ID+Ang II group. The survival time, systolic blood pressure (SBP), and aortic medial degeneration (AMD) formation were monitored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!