Natural attenuation characteristics and comprehensive toxicity changes of C9 aromatics under simulated marine conditions.

J Environ Sci (China)

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China. Electronic address:

Published: November 2021

Microcosmic experiments were performed under a simulated marine environment to investigate the natural attenuation of C9 aromatics using nine components (propylbenzene, isopropylbenzene, 2-ethyltoluene, 3-ethyltoluene, 4-ethyltoluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and indene). This research aims to assess the contribution of biodegradation and abiotic activity to total attenuation of C9 aromatics and ascertain the changes in the comprehensive toxicity of seawater in the natural environment. The process of natural attenuation indicates the agreement with pseudo-first-order kinetics for all nine components in microcosmic experiments. The half-lives of the nine main compounds in C9 aromatics ranged between 0.34 day and 0.44 day under optimal conditions. The experiments showed that the natural attenuation of nine aromatic hydrocarbons mainly occurred via abiotic processes. Seawater samples significantly inhibited the luminescence of P. phosphoreum (the luminescence inhibition ratio reached 100%) at the beginning of the experiment. In addition, the toxicity declined slowly and continued for 25 days. The attenuation kinetics and changes in toxicity could be applied to explore the natural attenuation of C9 aromatics in the marine environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2021.02.029DOI Listing

Publication Analysis

Top Keywords

natural attenuation
20
attenuation aromatics
12
comprehensive toxicity
8
simulated marine
8
microcosmic experiments
8
marine environment
8
natural
6
attenuation
6
aromatics
5
attenuation characteristics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!