Background: KRAS is mutated in ∼30% of non-small-cell lung cancer (NSCLC) but it has also been identified as one of the mechanisms underlying resistance to tyrosine kinase inhibitors (TKIs) in EGFR-positive NSCLC patients. Novel KRAS inhibitors targeting KRAS p.G12C mutation have been developed recently with promising results. The proportion of EGFR-positive NSCLC tumours harbouring the KRAS p.G12C mutation upon disease progression is completely unexplored.

Materials And Methods: Plasma samples from 512 EGFR-positive advanced NSCLC patients progressing on a first first-line treatment with a TKI were collected. The presence of KRAS p.G12C mutation was assessed by digital PCR.

Results: Overall, KRAS p.G12C mutation was detected in 1.17% of the samples (n = 6). In two of these cases, we could confirm that the KRAS p.G12C mutation was not present in the pre-treatment plasma samples, supporting its role as an acquired resistance mutation. According to our data, KRAS patients showed similar clinicopathological characteristics to those of the rest of the study cohort and no statistically significant associations between any clinical features and the presence of the mutation were found. However, two out of six KRAS tumours harboured less common EGFR driver mutations (p.G719X/p.L861Q). All KRAS patients tested negative for the presence of p.T790M resistance mutation.

Conclusions: The KRAS p.G12C mutation is detected in 1% of EGFR-positive NSCLC patients who progress on a first line with a TKI. All KRAS patients were negative for the presence of the p.T790M mutation and they did not show any distinctive clinical feature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493588PMC
http://dx.doi.org/10.1016/j.esmoop.2021.100279DOI Listing

Publication Analysis

Top Keywords

kras pg12c
28
pg12c mutation
28
kras
13
egfr-positive nsclc
12
nsclc patients
12
kras patients
12
mutation
10
non-small-cell lung
8
lung cancer
8
patients progressing
8

Similar Publications

Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.

View Article and Find Full Text PDF

Background: The mutation of the KRAS (Kirsten rat sarcoma virus) gene is a prevalent genetic alteration in metastatic colorectal cancer (mCRC). According to previous research, this mutation significantly affects clinical outcomes and quality of life (QOL). This research investigated the association between KRAS mutant status and various aspects of QOL in mCRC patients.

View Article and Find Full Text PDF

Background: KRAS mutations in rectal cancer are associated with a conflict prognosis. This study aimed to compare clinicopathological outcomes of patients and tumor criteria between wKRAS and mKRAS, as well as overall survival in the two groups.

Methods: The research retrospectively analyzed a cohort of 193 patients who received surgical treatment for rectal adenocarcinoma between May 2015 and December 2023.

View Article and Find Full Text PDF

Transcriptomic signatures and network-based methods uncover new senescent cell anti-apoptotic pathways and senolytics.

FEBS J

January 2025

Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.

Cellular senescence is an irreversible cell cycle arrest caused by various stressors that damage cells. Over time, senescent cells accumulate and contribute to the progression of multiple age-related degenerative diseases. It is believed that these cells accumulate partly due to their ability to evade programmed cell death through the development and activation of survival and antiapoptotic resistance mechanisms; however, many aspects of how these survival mechanisms develop and activate are still unknown.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!