A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Establishment of Agrobacterium tumefaciens - mediated genetic transformation of apple pathogen Marssonina coronaria using marker genes under the control of CaMV 35S promoter. | LitMetric

AI Article Synopsis

  • The study addresses the significant economic impact of Marssonina coronaria, which causes premature leaf fall in apple trees and affects all commercially available apple cultivars.
  • The researchers successfully established an Agrobacterium-mediated transformation system for the fungus, optimizing conditions such as acetosyringone concentration and temperature to enhance transformation efficiency.
  • The findings allow for better understanding of the molecular interactions between apples and M. coronaria, paving the way for functional genomics studies to explore the roles of specific genes in this important plant disease.

Article Abstract

Premature leaf fall of apple caused by Marssonina coronaria is economically very important apple disease and all the commercially available apple cultivars are susceptible to this disease. The non-availability of an efficient transformation system for this fungus hinders the functional genomics research. Herein, we report for the first time, the successful Agrobacterium-mediated transformation in apple leaf blotch fungus M. coronaria by transferring T-DNA harbouring the genes for hygromycin phosphotransferase (hpt), β-glucuronidase (uidA) and green fluorescent protein (gfp) under the control of CaMV 35S promoter. The key factors that affect the transformation efficiency including type of recipient fungal material, acetosyringone concentration, the conditions for co-cultivation, Agrobacterium concentration, Agrobacterium strains and membrane types as support were investigated. The present results have recommended that 250 μM concentration of acetosyringone, 24 °C temperature and 48 h time, 0.5 OD of A. tumefaciens, EHA105 Agrobacterium strain and Whatman filter paper were the optimal co-cultivation conditions for the transformation of M. coronaria by using fragmented mycelia suspension and mycelial plugs. We observed that conidia were tedious to transform as compared to the fragmented mycelia and mycelial plugs of this slow growing fungus. These optimized parameters yielded 54 and 70 average transformants per 60 mycelial plugs and 10 fragmented mycelia, respectively. Fungal transformants were analysed for T-DNA integration, gus gene expression and gfp gene expression. Strong gus histochemical staining and green fluorescence expression indicated that the CaMV 35S promoter can drive gene expression in M. croronaria. Some mutants showed difference in the morphology of the colony as compared to the wild type control. This report will be very useful to inspect molecular basis of apple-M. coronaria interactions by deciphering the functional roles of various genes in this pathogenic fungus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2021.126878DOI Listing

Publication Analysis

Top Keywords

camv 35s
12
35s promoter
12
fragmented mycelia
12
mycelial plugs
12
gene expression
12
transformation apple
8
marssonina coronaria
8
control camv
8
transformation
5
apple
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!