Partial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum () gene. Here, we carried out selection over a 1-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen. After 18 cycles of sequential drug pressure, the selected parasites exhibited enhanced survival to dihydroartemisinin in the ring-stage survival assay (RSA = 9.2%). Sanger and whole-genome sequence analyses identified the PfK13 P413A mutation, localized in the BTB/POZ domain, upstream of the propeller domain. This mutation was sufficient to confer artemisinin resistance when introduced into the PfK13 coding sequence of the parasite strain Dd2 by CRISPR/Cas9 gene editing. These results together with structural studies of the protein demonstrate that the propeller domain is not the sole mediator of PfK13-mediated artemisinin resistance, and highlight the importance of monitoring for mutations throughout PfK13.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765297 | PMC |
http://dx.doi.org/10.1128/AAC.01320-21 | DOI Listing |
Int J Parasitol Drugs Drug Resist
December 2024
W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21210, USA. Electronic address:
Fosmidomycin and clindamycin target the Plasmodium apicoplast. Combination clinical trials have produced mixed results with the primary problem being the recrudescent infection frequency by day 28. Given that antibiotic efficacy against bacterial infections often depends on the constant drug presence over several days, we hypothesized that the antimalarial blood or liver stage efficacy of fosmidomycin and clindamycin could be improved by implementing a more frequent dosing schedule.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P.
View Article and Find Full Text PDFNew Microbes New Infect
December 2024
Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands.
Background: Accurate scientific terminology is crucial in health sciences to avoid misinterpretations. The use of 'artemisinin resistance' to describe delayed parasite clearance may be inaccurately equated with full resistance, as is typically the case when 'resistance' is used with other pathogens, leading to potential confusion. In 2018, the World Health Organization (WHO) introduced 'partial artemisinin resistance' to more accurately reflect the delayed parasite clearance observed with artemisinin-based therapies.
View Article and Find Full Text PDFLancet Infect Dis
December 2024
MMV Medicines for Malaria Venture, Geneva, Switzerland.
Background: Novel antimalarials are needed to address emerging resistance to artemisinin and partner drugs. We did two trials to evaluate safety, tolerability, pharmacokinetics, and activity against blood stage Plasmodium falciparum for the drug candidate MMV533.
Methods: A phase 1a first-in-human (FIH) trial was conducted at Nucleus Network (Melbourne, VIC, Australia).
Lancet Microbe
December 2024
Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali.
Background: Triple artemisinin-based combination therapies (TACTs) can delay the spread of antimalarial drug resistance. Artesunate-amodiaquine is widely used for uncomplicated Plasmodium falciparum malaria. We therefore aimed to determine the safety and efficacy of artemether-lumefantrine-amodiaquine and artesunate-amodiaquine with and without single low-dose primaquine for reducing gametocyte carriage and transmission to mosquitoes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!