Hypoglycemia is a common occurrence in critically ill patients and is associated with significant mortality and morbidity. We developed a machine learning model to predict hypoglycemia by using a multicenter intensive care unit (ICU) electronic health record dataset. Machine learning algorithms were trained and tested on patient data from the publicly available eICU Collaborative Research Database. Forty-four features including patient demographics, laboratory test results, medications, and vitals sign recordings were considered. The outcome of interest was the occurrence of a hypoglycemic event (blood glucose < 72 mg/dL) during a patient's ICU stay. Machine learning models used data prior to the second hour of the ICU stay to predict hypoglycemic outcome. Data from 61,575 patients who underwent 82,479 admissions at 199 hospitals were considered in the study. The best-performing predictive model was the eXtreme gradient boosting model (XGBoost), which achieved an area under the received operating curve (AUROC) of 0.85, a sensitivity of 0.76, and a specificity of 0.76. The machine learning model developed has strong discrimination and calibration for the prediction of hypoglycemia in ICU patients. Prospective trials of these models are required to evaluate their clinical utility in averting hypoglycemia within critically ill patient populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152921PMC
http://dx.doi.org/10.1007/s10877-021-00760-7DOI Listing

Publication Analysis

Top Keywords

machine learning
12
critically ill
8
ill patients
8
electronic health
8
predicting hypoglycemia
4
hypoglycemia critically
4
patients machine
4
learning electronic
4
health records
4
records hypoglycemia
4

Similar Publications

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.

View Article and Find Full Text PDF

Lanthanide-Assisted Function Tailoring of the HOF-Based Logic Gate Sensor Array for Biothiol Detection and Disease Discrimination.

Anal Chem

January 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.

View Article and Find Full Text PDF

XGBoost-based nomogram for predicting lymph node metastasis in endometrial carcinoma.

Am J Cancer Res

December 2024

Department of Reproductive Medicine, The First Affiliated Hospital, Jinan University Guangzhou 510000, Guangdong, China.

This study aims to construct and optimize risk prediction models for lymph node metastasis (LNM) in endometrial carcinoma (EC) patients, thus improving the identification of patients at high risk of LNM and further providing accurate support for clinical decision-making. This retrospective analysis included 541 cases of EC treated at The First Affiliated Hospital, Jinan University between January 2017 and January 2022. Various clinical and pathological variables were incorporated, including age, body mass index (BMI), pathological grading, myometrial invasion, lymphovascular space invasion (LVSI), estrogen receptor (ER) and progesterone receptor (PR) levels, and tumor size.

View Article and Find Full Text PDF

Background: Prediction models for atrial fibrillation (AF) may enable earlier detection and guideline-directed treatment decisions. However, model bias may lead to inaccurate predictions and unintended consequences.

Objective: The purpose of this study was to validate, assess bias, and improve generalizability of "UNAFIED-10," a 2-year, 10-variable predictive model of undiagnosed AF in a national data set (originally developed using the Indiana Network for Patient Care regional data).

View Article and Find Full Text PDF

A significant advancement in synthetic biology is the development of synthetic gene circuits with predictive Boolean logic. However, there is no universally accepted or applied statistical test to analyze the performance of these circuits. Many basic statistical tests fail to capture the predicted logic (OR, AND, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!