Ultraviolet photodetectors (UVPDs) based on wide band gap semiconductors (WBSs) are important for various civil and military applications. However, the relatively harsh preparation conditions and the high cost are unfavorable for commercialization. In this work, we proposed a non-WBS UVPD by using a silicon nanowire (SiNW) array with a diameter of 45 nm as building blocks. Device analysis revealed that the small diameter SiNW array covered with monolayer graphene was sensitive to UV light but insensitive to both visible and infrared light illumination, with a typical rejection ratio of 25. Specifically, the responsivity, specific detectivity, and external quantum efficiency under 365 nm illumination were estimated to be 0.151 A/W, 1.37 × 10 Jones, and 62%, respectively, which are comparable to or even better than other WBS UVPDs. Such an abnormal photoelectrical characteristic is related to the HE leaky mode resonance (LMR), which is able to shift the peak absorption spectrum from near-infrared to UV regions. It is also revealed that this LMR is highly dependent on the diameter and the period of the SiNW array. These results show narrow band gap semiconductor nanostructures as promising building blocks for the assembly of sensitive UV photodetectors, which are very important for various optoelectronic devices and systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c06705DOI Listing

Publication Analysis

Top Keywords

sinw array
12
leaky mode
8
silicon nanowire
8
band gap
8
building blocks
8
mode resonance-induced
4
resonance-induced sensitive
4
sensitive ultraviolet
4
ultraviolet photodetector
4
photodetector composed
4

Similar Publications

A flexible 3D ordered SERS sensor for rapid and reliable detection of pesticide residues in fruits.

Chem Commun (Camb)

January 2025

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

We fabricated flexible, three-dimensional (3D) ordered silicon nanowire (SiNW) arrays decorated with high-density silver nanoparticles (AgNPs) for the sensitive and reproducible detection of pesticide residues. These sensors demonstrated a detection limit of 10 M for methyl parathion (MPT) on curved surfaces.

View Article and Find Full Text PDF

High-Performance Field-Effect Sensing of Ammonia Based on High-Density and Ultrathin Silicon Nanowire Channels.

ACS Sens

November 2024

School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China.

Article Synopsis
  • Ultrathin silicon nanowires (SiNWs) are created using a cost-effective method, making them excellent components for sensitive field-effect transistor (FET) sensors.
  • A high-density array of ultrathin SiNWs, measuring 24 nm in diameter and spaced only 120 nm apart, is established through a novel fabrication technique.
  • The resulting FETs show impressive performance in detecting ammonia gas with a high sensitivity and rapid response, confirming their potential for advanced gas sensing applications in flexible and scalable technologies.
View Article and Find Full Text PDF

In this article, we propose a novel natural light detector based on high-performance silicon nanowire (SiNW) arrays. We achieved a highly controllable and low-cost fabrication of SiNW natural light detectors by using only a conventional micromachined CMOS process. The high activity of SiNWs leads to the poor long-term stability of the SiNW device, and for this reason, we have designed a fully wrapped structure for SiNWs.

View Article and Find Full Text PDF

Au Nanoparticles@Si Nanowire Oligomer Arrays for SERS: Dimers Are Best.

ACS Appl Mater Interfaces

August 2024

Department of Chemistry and Physics of Materials, University of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria.

We report the synthesis of vertically aligned silicon nanowire (VA-SiNW) oligomer arrays coated with Au nanoparticle (NP) monolayers via a combination of colloidal lithography, metal-assisted chemical etching, and directed NP assembly. Arrays of SiNW monomers (i.e.

View Article and Find Full Text PDF

Silicon nanowires (SiNWs) are emerging as versatile components in the fabrication of sensors for implantable medical devices because of their exceptional electrical, optical, and mechanical properties. This paper presents a novel top-down fabrication method for vertically stacked SiNWs, eliminating the need for wet oxidation, wet etching, and nanolithography. The integration of these SiNWs into body channel communication (BCC) circuits was also explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!