A method for the synthesis of DNA-based acrylamide hydrogel microcapsules loaded with quantum dots as a readout signal is introduced. The shell of DNA-acrylamide hydrogel microcapsules is encoded with microRNA-responsive functionalities, being capable of the detection of cancer-associated microRNA. The microRNA-141 (miR-141), a potential biomarker in prostate cancer, was employed as a model target in the microcapsular biosensor. The sensing principle of the microcapsular biosensor is based on the competitive sequence displacement of target miR-141 with the bridging DNA in the microcapsule's shell, leading to the unlocking of DNA-acrylamide hydrogel microcapsules and the release of the readout signal provided by fluorescent quantum dots. The readout signal is intensified as the concentration of miR-141 increases. While miR-141 was directly measured by DNA-acrylamide hydrogel microcapsules, the linear range for the detection of miR-141 is 2.5 to 50 μM and the limit of detection is 1.69 μM. To improve the sensitivity of the microcapsular biosensor for clinical needs, the isothermal strand displacement polymerization/nicking amplification machinery (SDP/NA) process was coupled to the DNA-acrylamide hydrogel microcapsule sensor for the microRNA detection. The linear range for the detection of miR-141 is improved to the range of 10 to 10 pM and the limit of detection is 44.9 pM. Compared to direct microcapsular biosensing, the detection limit for miR-141 by microcapsules coupled with strand-displacement amplification is enhanced by four orders of magnitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1nr05170a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!