This paper reports a convenient copper-catalyzed three-component conversion of arylhydrazine hydrochlorides to arenesulfonyl fluorides in good yields under mild conditions, using 1,4-diazabicyclo [2.2.2]octane bis(sulfur dioxide) (DABSO) as a sulfonyl source and -fluorobenzenesulfonimide (NFSI) as a fluorine source based on a radical sulfur dioxide insertion and fluorination strategy. Notably, arylhydrazine hydrochloride is used as a safe precursor of aryl radicals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1ob01697kDOI Listing

Publication Analysis

Top Keywords

copper-catalyzed three-component
8
arylhydrazine hydrochloride
8
arenesulfonyl fluorides
8
three-component reaction
4
reaction arylhydrazine
4
hydrochloride dabso
4
dabso nfsi
4
nfsi synthesis
4
synthesis arenesulfonyl
4
fluorides paper
4

Similar Publications

A novel dual photoredox/copper-catalyzed three-component alkylcyanation of alkenes and 1,4-alkylcyanation of 1,3-enynes have been developed. In this radical cyanoalkylation reaction, the photoredox induced alkyl radical from sulfoxonium ylides adds to the carbon-carbon double bonds of styrenes or 1,3-enynes, and the generated benzylic or allenyl radicals couple with a Cu(II) cyanide complex to achieve selective cyanation. The reaction exhibits high chemo- and regioselectivity and a wide substrate scope, providing an efficient method for the synthesis of alkyl nitriles and allenyl nitriles in a single step.

View Article and Find Full Text PDF

A one-pot, three-component synthesis of indole-benzofuran bis-heterocycles from terminal alkynes, salicylaldehydes, and indoles has been developed via copper-catalyzed tandem annulation. This catalytic system utilizes readily available starting materials, enabling predictable synthesis of indole-benzofuran bis-heterocycles with broad substrate versatility, excellent regiocontrol, and gram-scale amenability. The reaction proceeds via a sequential pathway involving A3 coupling, 1,4-conjugate addition, and 5-- cyclization.

View Article and Find Full Text PDF

Photocatalysis Meets Copper Catalysis: A New Opportunity for Asymmetric Multicomponent Radical Cross-Coupling Reactions.

Acc Chem Res

December 2024

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.

Article Synopsis
  • Radical-mediated cross-coupling reactions are a powerful method for creating diverse molecular structures, but they face challenges in controlling reaction pathways and selectivity due to the high reactivity of radicals.
  • The use of visible-light photoredox catalysis combined with chiral copper catalysts can enhance control over radical species and improve enantioselective reactions.
  • This research focuses on innovative strategies for chiral C-C and C-O bond formation by utilizing dual photoredox/copper catalysis, highlighting the effectiveness of visible light in achieving selectivity in these reactions.
View Article and Find Full Text PDF

Cu-Catalyzed Asymmetric Three-Component Radical Acylarylation of Vinylarenes with Aldehydes and Aryl Boronic Acids.

J Am Chem Soc

November 2024

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The direct use of readily available aldehydes as acyl radical precursors has facilitated diverse three-component acylative difunctionalization reactions of alkenes, offering a powerful route to synthesize β-branched ketones. However, asymmetric three-component acylative difunctionalization of alkenes with aldehydes still remains elusive. Here we report a copper-catalyzed asymmetric three-component radical acylarylation of vinylarenes with aldehydes and aryl boronic acids.

View Article and Find Full Text PDF

The asymmetric dicarbofunctionalization of alkenes a radical relay process can provide routes to diverse hydrocarbon derivatives. Three-component carboalkynylation, limited to particular alkyl halides and using readily available cycloketone oxime esters as redox-active precursors, is restricted by the available pool of suitable chiral ligands for broadening the redox potential window of copper complexes and simultaneously creating the enantiocontrol environment. Herein, we report a new hybrid tridentate ligand bearing a guanidine-amide-pyridine unit for photoinduced copper-catalyzed cyanoalkylalkynylation of alkenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!