Background: Apparent diffusion coefficient (ADC) measurements are not incorporated in BI-RADS classification.

Purpose: To assess the probability of malignancy of breast lesions at magnetic resonance mammography (MRM) at 3 T, by combining ADC measurements with the BI-RADS score, in order to improve the specificity of MRM.

Material And Methods: A total of 296 biopsy-proven breast lesions were included in this prospective study. MRM was performed at 3 T, using a standard protocol with dynamic sequence (DCE-MRI) and an extra echo-planar diffusion-weighted sequence. A freehand region of interest was drawn inside the lesion, and ADC values were calculated. Each lesion was categorized according to the BI-RADS classification. Logistic regression analysis was employed to predict the probability of malignancy of a lesion. The model combined the BI-RADS classification and the ADC value. Sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were calculated.

Results: In total, 153 malignant and 143 benign lesions were analyzed; 257 lesions were masses and 39 lesions were non-mass-like enhancements. The sensitivity and specificity of the combined method were 96% and 86%, respectively, in contrast to 95% and 81% with BI-RADS classification alone.

Conclusion: We propose a method of assessing the probability of malignancy in breast lesions by combining BI-RADS score and ADC values into a single formula, increasing sensitivity and specificity compared to BI-RADS classification alone.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02841851211041822DOI Listing

Publication Analysis

Top Keywords

bi-rads classification
16
probability malignancy
12
breast lesions
12
sensitivity specificity
12
adc measurements
8
malignancy breast
8
bi-rads score
8
adc values
8
bi-rads
7
lesions
6

Similar Publications

This study aimed to develop a Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression (LR) model using quantitative imaging features from Shear Wave Elastography (SWE) and Contrast-Enhanced Ultrasound (CEUS) to assess the malignancy risk of BI-RADS 4 breast lesions (BLs). The features predictive of malignancy in the LASSO analysis were used to construct a nomogram. Female patients (n = 111) with BI-RADS 4 BLs detected via routine ultrasound at Ma'anshan People's Hospital underwent SWE, CEUS, and histopathological examinations were enrolled in this study.

View Article and Find Full Text PDF

A Short Breast Imaging Reporting and Data System-Based Description for Classification of Breast Mass Grade.

Life (Basel)

December 2024

Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, San Andres Cholula 72840, Mexico.

Identifying breast masses is relevant in early cancer detection. Automatic identification using computational methods helps assist medical experts with this task. Although high values have been reported in breast mass classification from digital mammograms, most results have focused on a general benign/malignant classification.

View Article and Find Full Text PDF

Objective: This study develops a BI-RADS-like scoring system for vascular microcalcifications in mammographies, correlating breast arterial calcification (BAC) in a mammography with coronary artery calcification (CAC), and specifying differences between microcalcifications caused by BAC and microcalcifications potentially associated with malignant disease.

Materials And Methods: This retrospective single-center cohort study evaluated 124 consecutive female patients (with a median age of 57 years). The presence of CAC was evaluated based on the Agatston score obtained from non-enhanced coronary computed tomography, and the calcifications detected in the mammography were graded on a four-point Likert scale, with the following criteria: (1) no visible or sporadically scattered microcalcifications, (2) suspicious microcalcification not distinguishable from breast arterial calcification, (3) minor breast artery calcifications, and (4) major breast artery calcifications.

View Article and Find Full Text PDF

MIC: Breast Cancer Multi-label Diagnostic Framework Based on Multi-modal Fusion Interaction.

J Imaging Inform Med

January 2025

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China.

The automated diagnosis of low-resolution and difficult-to-recognize breast ultrasound images through multi-modal fusion holds significant clinical value. However, prevailing fusion methods predominantly rely on image modalities, neglecting the textual pathology information, and only benign and malignant diagnosis of breast tumors is not satisfying for clinical applications. Consequently, this paper proposes a novel multi-modal fusion interactive diagnostic framework, termed the MIC framework, to achieve the multi-label classification of breast cancer, namely benign-malignant classification and breast imaging reporting and data system (BI-RADS) 3, 4a, 4b, 4c, and 5 gradings.

View Article and Find Full Text PDF

Objective: To analyse the parameters of shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) in breast non-mass-like lesions (NMLs) and to evaluate the added diagnostic value of SWE and CEUS when combined with B-mode ultrasound (US) for differentiating NMLs.

Methods: A total of 118 NMLs from 115 patients underwent US, SWE, and CEUS examinations. The SWE parameter with the highest areas under the receiver operating characteristic (ROC) curves (Az) and independent variables of CEUS obtained by logistic regression were used to adjust the BI-RADS-US (Breast Imaging Reporting and Data System for Ultrasound) classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!