Mitigating the Kinetic Hindrance of Single-Crystalline Ni-Rich Cathode via Surface Gradient Penetration of Tantalum.

Angew Chem Int Ed Engl

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Published: December 2021

Single-crystalline Ni-rich cathodes are promising candidates for the next-generation high-energy Li-ion batteries. However, they still suffer from poor rate capability and low specific capacity due to the severe kinetic hindrance at the nondilute state during Li intercalation. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that this obstacle can be tackled by regulating the oxidation state of nickel via injecting high-valence foreign Ta . The as-obtained single-crystalline LiNi Co Mn O delivers a high specific capacity (211.2 mAh g at 0.1 C), high initial Coulombic efficiency (93.8 %), excellent rate capability (157 mAh g at 4 C), and good durability (90.4 % after 100 cycles under 0.5 C). This work provides a strategy to mitigate the Li kinetic hindrance of the appealing single-crystalline Ni-rich cathodes and will inspire peers to conduct an intensive study.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202111954DOI Listing

Publication Analysis

Top Keywords

kinetic hindrance
12
single-crystalline ni-rich
12
ni-rich cathodes
8
rate capability
8
specific capacity
8
mitigating kinetic
4
single-crystalline
4
hindrance single-crystalline
4
ni-rich cathode
4
cathode surface
4

Similar Publications

The introduction of structural defects can improve the charge separation efficiency of metal-organic frameworks (MOFs)-based photocatalysts, which however come with suboptimal decontamination performance, due to steric hindrance and limited binding capacity of the involved modulators. In this work, hydroxyl group capturing the advantages of both worlds was utilized as new modulator to improve the photocatalytic performance of Fe-based defective MOFs. Benefited from its low steric effect and strong coordination bonding capability, hydroxyl-induced defects in Fe-MOF contributed to a nearly 8-fold increase of rate constant for the photocatalytic removal of hexavalent chromium (Cr(VI)) compared to that of pristine one, which also exceeded the defective one induced by acetic acid as modulator.

View Article and Find Full Text PDF

A vaccination programme against severe acute respiratory syndrome coronavirus 2 was initiated in Portugal in December 2020. In this study, we report the findings of a prospective cohort study implemented with the objective of monitoring antibody production in response to COVID-19 vaccination. The humoral immune response to vaccination was followed up using blood samples collected from 191 healthcare workers.

View Article and Find Full Text PDF

Synergy of Copper Doping and Carbon Defect Engineering in Promoting C-C Coupling for Enhanced CO Photoreduction to Ethanol Activity.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.

Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.

View Article and Find Full Text PDF

Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation.

Appl Microbiol Biotechnol

December 2024

Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.

Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.

View Article and Find Full Text PDF

This study investigates the mechanism of prototropic tautomerization in metal-bound asymmetric pyrazole (R-PzH) ligands during Cu(II)-mediated PzH-MeCN coupling reactions. Intrinsic prototropic tautomerization of metal-bound ligands has not been previously documented. Various new bis-pyrazolylamidino Cu(II) complexes, [Cu(R-Pz(HNC(Me)))(ClO)], from the coupling reaction, and tetrakis pyrazole Cu(II) complexes, [Cu(R-PzH)(ClO)], with symmetric and asymmetric -monosubstituted R-PzH ligands were synthesized and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!