While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647151PMC
http://dx.doi.org/10.15252/embr.202153007DOI Listing

Publication Analysis

Top Keywords

activity ebna2
8
ebna2
6
plk1-dependent phosphorylation
4
phosphorylation restrains
4
restrains ebna2
4
ebna2 activity
4
activity lymphomagenesis
4
lymphomagenesis ebv-infected
4
ebv-infected mice
4
mice epstein-barr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!