Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment.

Environ Adv

School of Civil, Environmental, and Infrastructure Engineering, Southern Illinois University, Carbondale, IL, 62901, USA.

Published: October 2021

Majority of the million tons of plastic produced each year is being disposed after single-use. Plastic bottle, bags, food containers, gloves, and cup that end up in landfills and environment could linger for hundreds to thousands of years. Moreover, COVID-19 pandemic caused by the novel coronavirus (SARS-CoV-2), will also exacerbate the global plastic pollution as the use of personal protective equipment (PPE i.e., gloves, masks) became mandatory to prevent the spread of the virus. Plastic eventually breaking down in micro & nanoscopic bits due to physical or chemical or biological actions in the environment, can enter animal and human food web. So, plastic management programs need to be more robust with a focus on the prevention of the micro and nanoplastics entrance into the environment and food web. In the present pandemic situation, it is even more necessary to know about how much plastic waste is being generated and how different countries are coping up with their plastic waste management. In this review, we have elucidated how global plastic production rise during COVID-19 and how it would contribute to short and long-term impacts on the environment. Plastic pollution during the pandemic will increase the GHS emissions in the incineration facilities. Improper disposal of plastics into the oceans and lands would endanger the marine species and subsequently human lives. We have also assessed how the increased plastic pollution will aggravate the micro and nanoscale plastic problem, which have now become an emerging concern. This review will be helpful for people to understand the plastic usage and its subsequent consequences in the environment in a pandemic like COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464355PMC
http://dx.doi.org/10.1016/j.envadv.2021.100119DOI Listing

Publication Analysis

Top Keywords

plastic pollution
16
plastic
14
plastic waste
12
global plastic
8
food web
8
environment
6
covid-19
4
pollution covid-19
4
covid-19 plastic
4
waste directives
4

Similar Publications

Microplastic and nanoplastic exposure and risk of diabetes mellitus.

World J Clin Cases

January 2025

Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 33305, Taoyuan, Taiwan.

The issue of plastic pollutants has become a growing concern. Both microplastics (MPs) (particle size < 5 mm) and nanoplastics (NPs) (particle size < 1 µm) can cause DNA damage, cytotoxicity, and oxidative stress in various organisms. The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system, leading to hepatotoxicity and chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

Cellulose-based multifunctional materials with robust hydrophobic, antibacterial, and antioxidant properties through dynamic cross-linked network structures.

Int J Biol Macromol

January 2025

Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:

Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).

View Article and Find Full Text PDF

Chronic environmental exposure to polystyrene microplastics increases the risk of nonalcoholic fatty liver disease.

Toxicology

January 2025

Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Key Laboratory of Non coding RNA Basic and Clinical Transformation, Yangzhou University, Yangzhou, Jiangsu Province 225009, China. Electronic address:

Microplastics (MPs), as the crucial environmental pollutants, can be easily transported into the human body and accumulate in the liver. However, current studies mainly focus on acute exposure to MPs, investigations on long-term interactions with MPs alone remain limited. Thereby, we examined noxious properties of MPs and selected the most common polystyrene (PS) MPs as the research object, including unmodified PS MPs (PS-MPs) and positive-charged PS MPs (PS-NH) at 10 mg/L employing oral drinking water methods in mice for six consecutive months in vivo.

View Article and Find Full Text PDF

Higher potential leaching of inorganic and organic additives from biodegradable compared to conventional agricultural plastic mulch film.

J Hazard Mater

January 2025

Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Geography, University of Bristol, Bristol BS8 1SS, UK.

Plastic mulch films support global food security, however, their composition and the potential release rates of organic, metal and metalloid co-contaminants remains relatively unknown. This study evaluates the low molecular weight organic additives, metal and metalloid content and leaching from low density polyethylene (LDPE) and biodegradable plastic mulch films. We identified 59 organic additives, and non-intentionally added substances in the new LDPE films (39.

View Article and Find Full Text PDF

Identification of drivers of global trade in plastic waste based on GCA and ISM-MICMAC model: Taking China, USA and South Africa as cases.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China. Electronic address:

Plastic waste's dual characteristics of "resource" and "pollution" led to the prevalence of trade. The Global Plastic Waste Trade Network (GPWTN) is heterogeneous, and its structure is susceptible to the influence of key countries within it. However, there is a shortage of research on the key countries and trade drivers influencing GPWTN evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!