The silver nanoparticles (AgNPs) using the rhizome extract of have been reported. However, their antioxidant activity and whether the biogenic AgNPs could be used to catalyze the reduction of hazardous dye or used as fluorescence enhancers are unknown. This study focused on the facile green synthesis of silver nanoparticles using the rhizome aqueous extract of (G-AgNPs). We then studied their antioxidant activity and catalytic degradation of hazardous dye Direct Orange 26 (DO26) and Direct Blue 15 (DB15). Their effects on fluorescein's fluorescent properties were also evaluated. The chemical AgNPs (C-AgNPs) were synthesized by reducing solid sodium borohydride (NaBH), and its above activities were compared with those of G-AgNPs. The formation of G-AgNPs was confirmed by the appearance of brownish-gray color and the surface plasmon resonance (SPR) peak at 437 nm. The biogenic AgNPs were approximately 10 nm in size with a regular spherical shape identified from transmission electron microscopy (TEM) analysis. G-AgNPs exhibited significantly improved 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity than butylated hydroxytoluene (BHT) and C-AgNPs ( < 0.05). The biogenic G-AgNPs were also found to function as an effective green catalyst in reducing DO26 and DB15 by NaBH, which is superior to C-AgNPs. Furthermore, G-AgNPs showed better fluorescence enhancement activity than C-AgNPs, and the concentration required was lower. When the concentration of the G-AgNP solution was 64 nmol/L, the fluorescence intensity reached the maximum of 5460, with the fluorescence enhancement efficiency of 3.39, and the fluorescence activity was stable within 48 h. This study shows the efficacy of biogenic AgNPs in catalyzing the reduction of hazardous dye DO26 and DB15. Biogenic AgNPs could also be used as fluorescence enhancers in low concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482401PMC
http://dx.doi.org/10.1021/acsomega.1c02843DOI Listing

Publication Analysis

Top Keywords

biogenic agnps
16
silver nanoparticles
12
hazardous dye
12
green synthesis
8
synthesis silver
8
antioxidant activity
8
reduction hazardous
8
fluorescence enhancers
8
do26 db15
8
fluorescence enhancement
8

Similar Publications

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).

View Article and Find Full Text PDF

This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.

View Article and Find Full Text PDF

The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation.

View Article and Find Full Text PDF

Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!