Antifreeze proteins (AFPs) are proteins that protect cellular fluids and body fluids from freezing by inhibiting the nucleation and growth of ice crystals and preventing ice recrystallization, thereby contributing to the maintenance of life in living organisms. They exist in fish, insects, microorganisms, and fungi. However, the number of known AFPs is currently limited, and it is essential to construct a reliable dataset of AFPs and develop a bioinformatics tool to predict AFPs. In this work, we first collected AFPs sequences from UniProtKB considering the reliability of annotations and, based on these datasets, developed a prediction system using random forest. We achieved accuracies of 0.961 and 0.947 for non-redundant sequences with less than 90% and 30% identities and achieved the accuracy of 0.953 for representative sequences for each species. Using the ability of random forest, we identified the sequence features that contributed to the prediction. Some sequence features were common to AFPs from different species. These features include the Cys content, Ala-Ala content, Trp-Gly content, and the amino acids' distribution related to the disorder propensity. The computer program and the dataset developed in this work are available from the GitHub site: https://github.com/ryomiya/Prediction-and-analysis-of-antifreeze-proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473546 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e07953 | DOI Listing |
J Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFLangmuir
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The antifreeze mechanism of antifreeze glycoproteins (AFGPs) remains incompletely understood, which limits the design of new antifreeze molecules for practical applications. For instance, the ice growth inhibition of AFGP8 (the shortest AFGPs) is primarily driven by hydrophobic methyl and hydrogen-bonding hydroxyl groups. However, altering the C3-β linkage in the disaccharide moiety of AFGP8, denoted as variant GP8-LacNAc, significantly reduces its antifreeze activity.
View Article and Find Full Text PDFTheriogenology
January 2025
Veterinary Clinic for Reproductive Medicine and Neonatology, Justus Liebig-University of Giessen, Germany.
Sperm cryopreservation is crucial in reproductive biotechnology; however, the longevity of frozen and thawed semen is limited by the deterioration of sperm cell integrity. This study aimed to examine the effects of adding antifreeze protein III (AFP III) to the diluent, using samples from eight healthy mature dogs. The ejaculates were divided into aliquots and diluted with a standard Tris-fructose-egg yolk extender containing AFP III at concentrations of 0, 0.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food Science, The University of Tennessee, Knoxville (UTK), TN 37996, United States. Electronic address:
The glycomacropeptide (GMP) present in the cheese whey byproduct can be an excellent antifreezing agent due to its unique molecular structure. The objective of this study was to concentrate this peptide and investigate its ice recrystallization inhibition (IRI) ability. Heat denaturation of the non-GMP proteins and preparative liquid chromatography were used to create fraction 1 (F1) and fraction 2 (F2) and these were tested using the splat assay and a modified sucrose sandwich assay to investigate their IRI activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!