Ganpu tea, an emerging pu-erh compound tea, which is cofermented with the peel of "Chachi," has been widely favored by Chinese consumers due to its potential health effects and distinct flavor and taste. So far, the influence of this cofermentation procedure on the chemical profile of pu-erh tea has barely been addressed yet. In this work, an ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry (UHPLC-QE Orbitrap MS)-based qualitative and quantitative method combined with multivariate analysis was conducted to comprehensively investigate the chemical changes in pu-erh tea after cofermented with peel. A total of 171 compounds were identified based on a three-level strategy, among which seven phenolic acids, 11 flavan-3-ols, and 27 flavonoids and flavonoid glycosides were identified from pu-erh tea for the first time. Eighty-nine main constituents were selected for further quantitative analysis using a validated method. Both the principal component analysis (PCA) of untargeted metabolomics and orthogonal partial least squares discriminant analysis (OPLS-DA) models of targeted components revealed the significant chemical profile disparity between the raw pu-erh tea and Ganpu tea. It showed that tea cofermentation process significantly decreased the total contents of phenolic acids, flavan-3-ols, and flavonoid aglycones, while most of the quercetin glycosides and myricetin glycosides as well as the vitexin were significantly increased. In addition, hesperidin, a flavonoid glycoside only existed in , was first found in pu-erh tea after cofermented with . This study clearly profiled the chemical composition and content changes of pu-erh tea after cofermented with peel, which revealed that tea cofermentation process further accelerated the fermentation of pu-erh tea and improved the unique flavor of tea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8484324PMC
http://dx.doi.org/10.3389/fnut.2021.737539DOI Listing

Publication Analysis

Top Keywords

pu-erh tea
32
tea cofermented
16
tea
14
cofermentation process
12
cofermented peel
12
pu-erh
9
chemical composition
8
ganpu tea
8
chemical profile
8
changes pu-erh
8

Similar Publications

The quality and safety of tea food production is of paramount importance. In traditional processing techniques, there is a risk of small foreign objects being mixed into Pu-erh sun-dried green tea, which directly affects the quality and safety of the food. To rapidly detect and accurately identify these small foreign objects in Pu-erh sun-dried green tea, this study proposes an improved YOLOv8 network model for foreign object detection.

View Article and Find Full Text PDF

Post-fermented Pu-erh tea (PFPT) is a microbial fermented tea characterized by unique sensory attributes and multiple health benefits. is the dominant fungus involved in the fermentation process and plays a significant role in imparting the distinct characteristics of PFPT. To investigate the role of in the fermentation of Pu-erh tea, this study inoculated unsterilized sun-dried green tea with isolated from Pu-erh tea to enhance the fermentation process.

View Article and Find Full Text PDF

Most reported sensor arrays for teas were based on the sensing of phenolic hydroxyl group on tea polyphenols. In this work, a novel sensor array was developed based on the simultaneous sensing of phenols and ketones, for the enhanced discrimination of tea polyphenols with/without ketone, and then for the efficient discrimination of raw Pu-erh teas from different origins and the counterfeit, combined with machine learning. This sensor array is consisting of four channels.

View Article and Find Full Text PDF

Theabrownin (TB), the primary pigment in Pu-erh tea, has shown potential in alleviating metabolic syndrome (MS), though its precise mechanisms remain unclear. This study investigated the effects of Pu-erh tea water extract (WE) and TB on high-fat diet (HFD)-induced MS in rats, focusing on miRNA regulation and gut microbiota composition. Both WE and TB significantly improved markers of MS, including dyslipidemia, insulin resistance, and inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the aroma of Pu-erh tea by analyzing volatile compounds from five regions in Yunnan using advanced techniques like gas chromatography-mass spectrometry (GC-MS) and headspace solid phase microextraction (HS-SPME).
  • - A total of 69 aroma-active compounds were identified, with alcohols, ketones, and aldehydes being the most common, and significant differences in terpenoid enantiomers were noted.
  • - Important compounds were highlighted through statistical analysis, and a KEGG pathway analysis pointed to key metabolic pathways related to aroma compounds, indicating their roles in the tea's flavor profile.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!