Aggregation-induced enhanced emission (AIEE) molecules have significant applications in optoelectronics, biomedical probes and chemical sensors, and large amounts of AIEE molecules have been reported since the concept of AIEE was proposed. Most aromatic AIEE molecules have complex structures consisting of multiple aromatic rings and/or polycyclic skeletons. In this study, we find that 2-aminophenylboronic acid (2-APBA) with a simple structure is highly emissive in the solid state. Further studies reveal that 2-APBA exists in a dimeric form, and the 2-APBA dimer is a novel AIEE molecule. The underlying AIEE mechanism is that the 2-APBA dimeric units aggregate through intermolecular interactions to produce highly ordered molecular packing without the presence of π-π stacking interactions that would lead to aggregation-caused quenching. Furthermore, the 2-APBA dimer aggregates could reversibly transform into its non-fluorescent monomer form driven by new kinds of dynamic covalent B-N and B-O bonds, illustrating its good potential in molecular recognition, nanogating, chemo/bio-sensing and controlled drug release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480421PMC
http://dx.doi.org/10.1039/d1sc03765jDOI Listing

Publication Analysis

Top Keywords

aiee molecules
12
aggregation-induced enhanced
8
enhanced emission
8
2-aminophenylboronic acid
8
2-apba dimer
8
aiee
6
2-apba
5
novel aggregation-induced
4
emission aromatic
4
aromatic molecule
4

Similar Publications

Lanthanide-Assisted Function Tailoring of the HOF-Based Logic Gate Sensor Array for Biothiol Detection and Disease Discrimination.

Anal Chem

January 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.

View Article and Find Full Text PDF

Organic luminescent materials having photoluminescence in their solid state have become emerging trends in chemistry, materials science, and biology due to their versatile potential applications. In the present contribution, we have introduced some methylenebis(4,1-phenylene) electron donor-acceptor-based fashionable solid-state fluorescent molecules, MBA, MBB, and MBH, having exciting photoluminescence characteristics in their solid and aggregate states. Interestingly, all probes exhibited a compelling aggregation-induced enhanced emission (AIEE) phenomenon in aqueous media.

View Article and Find Full Text PDF
Article Synopsis
  • Excessive fluoride use and chloroform exposure pose health risks, prompting the need for effective sensors to monitor these substances.
  • Researchers investigated etoricoxib (ECX) as a safe and available sensor, revealing its strong fluorescence response for detecting fluoride and chloroform at very low levels.
  • Advanced analyses, including UV-Vis and DFT studies, confirmed that ECX operates through non-covalent interactions, making it a promising tool for real-time detection of fluoride and moisture in various samples.
View Article and Find Full Text PDF
Article Synopsis
  • A new sensor called PDN has been developed that can selectively detect copper (Cu) and L-cysteine using a fluorescence On-Off-On approach and exhibits unique aggregation-induced emission enhancement (AIEE) properties.
  • The sensor's effectiveness relates to its diazo functional group and specific molecular design, which contributes to its behavior, including a bathochromic shift due to J-aggregate formation.
  • PDN shows impressive sensitivity with detection limits of 0.113 nM for Cu and 84 nM for L-cysteine and has been tested successfully in real-world samples, including strong acids and bases, and confirmed through various analytical methods and computational calculations.
View Article and Find Full Text PDF

Fluorescence Entrenched Probe for Onsite Detection of Amoxicillin Residue in Bovine Milk.

J Fluoresc

October 2024

Photochemistry Research Laboratory, Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, 627012, India.

A novel fluorescent probe (E)-3-(4-hydroxyphenyl)-2-((pyrene-1-ylmethylene) amino)propanoic acid (PyT) was developed for the 'turn-on' detection of amoxicillin(AM), residues. The PyT molecule was developed by a simple condensation reaction between a biologically important tyrosine amino acid and pyrene carboxaldehyde. The small fluorophore molecule has spectacular photoluminescence properties such as large stock shift, high photostability, selectivity and sensitivity toward the analytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!